Дан треугольник авс. плоскость, параллельная прямой ав, пересекает сторону ас этого треугольника в точке а1, а сторону вс в точке в1.найдите длину отрезка а1в1, если в1с= 10см, ав: вс= 4: 5
Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Плоскость треугольника АВС проходит через прямую АВ, параллельную данной плоскости, и пересекает эту плоскость, следовательно, линия пересечения этих плоскостей В1А1║АВ. Поэтому в ∆АВС и ∆А1В1С ∠СВ1А=∠СВА как соответственные при пересечении параллельных прямых АВ и А1В1 секущей ВС, ∠С - общий ⇒ эти треугольники подобны. Из подобия следует отношение: А1В1:В1С=АВ:ВС А1В1:10=4:5 5А1В1=40 ⇒ А1В1=8 см
"Около 4-угольника вписать окружность" - очень крутая фраза. Думаю, что Вы имели в виду около 4-угольника описать окружность; на этом и остановимся. Известно, что если около 4-угольника можно описать окружность, то суммы противоположных углов равны 180°. Если же углы относятся как 5:7:8:9, то первый угол меньше второго, третий меньше четвертого ⇒сумма первого и третьего будет меньше суммы второго и четвертого. А как написано выше, сумма первого и третьего должна равняться сумме второго и четвертого.
Поскольку a1b и bc перпендикулярны, то перпендикулярны, также, аb и bc, потому, что a1b и аb лежат в одной плоскости. Из чего следует, что основанием параллелепипеда является прямоугольник, по определению. Все углы, вершины угла, параллелепипеда прямые, значит это прямоугольный параллелепипед. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений. d=√144+16+9=13 см. Площадь поверхности параллелепипеда = 12*4*2+12*3*2+4*3*2= 192 см²
Плоскость треугольника АВС проходит через прямую АВ, параллельную данной плоскости, и пересекает эту плоскость, следовательно, линия пересечения этих плоскостей В1А1║АВ.
Поэтому в ∆АВС и ∆А1В1С ∠СВ1А=∠СВА как соответственные при пересечении параллельных прямых АВ и А1В1 секущей ВС, ∠С - общий ⇒ эти треугольники подобны.
Из подобия следует отношение:
А1В1:В1С=АВ:ВС
А1В1:10=4:5
5А1В1=40 ⇒
А1В1=8 см