50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
В равнобедренном треугольнике АВС с основанием АС, ВН - высота. Найдите ВН, если периметр треугольника АВС равен 48 см,
а периметр треугольника ВНС равен 32 см.
ответ или решение1
Так как треугольник ABC равнобедренный и его периметр равен 48, значит AB = BC, а AC = 48 - 2BC.
Высота BH делит AC пополам, соответственно, AH = HC = (48 - 2BC) / 2.
Площадь треугольника BHC равен 32 см.
Составляем уравнение:
BC + (48 - 2BC) / 2 + BH = 32;
Решаем уравнение:
2BC / 2 + (48 - 2BC) / 2 + BH = 32;
(2BC + 48 - 2BC) / 2 + BH = 32;
48 / 2+BH = 32;
24 + BH = 32;
BH = 32-24;
BH = 8
ответ: длина высоты BH равна 8 см
Объяснение:
Рассмотрим диагональ AC и высоту CK. Т. к. трапеция равнобочная, то высота делит нижнее основание на два отрезка - AK длиной (a+b)/2, т.е. равна средней линии трапеции, и KD длиной (a-b)/2 (Это элементарно. Если опустить высоту BM, то слева и справа будут одинаковые треугольники, у которых AM=KD=(a-b)/2, а AK=b+AM= b+(a-b)/2= (2b+a-b)/2= (a+b)/2)
Площадь трапеции равна произведению средней линии на высоту, т. е. надо найти CK и AK. Найдем их из прямоугольного треугольника AKC,в котором известна гипотенуза AC.
CK= 0,6 AC = 0<6*10= 6
AK=корень(AC^2-CK^2)=корень(100-36)=корень(64)=8
S=8*6=48