Дві бічні сторони трикутника дорівнюють 26см.і 30см.,а висота ,проведена на третю сторону дорівнює 24см. обчисліть медіану проведену до третьої сторони
1) Средняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне и равна ее половине. В данном треугольнке средняя линия параллельна основанию и равна его половине ⇒ длина основания равна 2*5 = 10 (см)
2) В прямоугольном треугольнике ABC: AB - гипотенуза BC - катет, противолежащий углу 48 градусов AC = 4см, - катет прилежащий углу 48 градусов ∠BAC = 48°
Катет BC можно найти с тангенса известного угла BAC. Тангенсом острого угла прямоугольного треугольника является отношение противолежащего этому углу катета BC к прилежащему AC. BC tg(BAC) = ⇒ BC = AC * tg(BAC) AC
По таблице Брадиса определяем, что тангенсу 48° соответствует величина 1,11061
BC = AC * 1,11061 BC = 4 * 1,11061 = 4, 44244 ≈ 4,5 (cм)
1) Средняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне и равна ее половине. В данном треугольнке средняя линия параллельна основанию и равна его половине ⇒ длина основания равна 2*5 = 10 (см)
2) В прямоугольном треугольнике ABC: AB - гипотенуза BC - катет, противолежащий углу 48 градусов AC = 4см, - катет прилежащий углу 48 градусов ∠BAC = 48°
Катет BC можно найти с тангенса известного угла BAC. Тангенсом острого угла прямоугольного треугольника является отношение противолежащего этому углу катета BC к прилежащему AC. BC tg(BAC) = ⇒ BC = AC * tg(BAC) AC
По таблице Брадиса определяем, что тангенсу 48° соответствует величина 1,11061
BC = AC * 1,11061 BC = 4 * 1,11061 = 4, 44244 ≈ 4,5 (cм)
Проекции двух известных сторон на третью сторону соответственно равны
√ (26² - 24²) = √ 100 = 10 см. и √ (30² - 24²) = √ 324 = 18 см.
Итак, третья сторона треугольника равна 10 + 18 = 28 см
Тогда медиана треугольника, проведенная к третьей стороне, равна
√ (2 * 26² + 2 * 30² - 28²) / 2 = √ (1352 + 1800 - 784) / 2 = √ 2368 / 2 = √ 592 ≈ 24,3 см.