3) к этому заданию рисунок не нужен решение: раз трапеция описана вокруг круга, то сумма противоположных сторона равна, значит сумма боковых сторон равна сумме оснований = 6 + 8 = 14 см средняя линия равна полусумме оснований = 14/2 = 7 см
2) <BOC = <AOD (вертикальные) BC ll AD (основания трапеции) <BCA = <CAD (накрест лежащие) <CBO = <ODA (накрест лежащие)==> ==> тр.ВОС подобен тр.AOD (по трем углам) (рис.1)
5) <KAD = <DAK (накрест лежащие) <DAK = <BAK (АК - биссектриса) ==> <BAK = <BKA==> ==> тр. АВК - равнобедреный и тогда АВ = ВК = 4 см ВС = ВК + КС = 4 + 6 = 10 см S abcd = AB * BC = 4 * 10 = 40 см^2(рис.2)
Точка середины стороны AB возьмем за N, а точку середины стороны AC возьмем за M. Тогда MN средняя линия треугольника. Если опустить высоту АН, то она будет перпендикуляра BC и MN. Пересечение высоты со средней линией прими за К. Тогда АК = КН поскольку MN средняя линия. На продолжении MN опустим перпендикуляры из точек C и B, а точки пересечения обозначим соответственно за Z и X. Тогда ZXCB прямоугольник у которого противолежащие стороны равны.Поскольку КН перпендикулярно CB, то CZ=KH=BX. Тогда вершины равно удалены от прямой.