1. АО = ВО как радиусы.
2. АС = ВС как отрезки касательных, проведенных из одной точки.
3. ∠ВСО = ∠АСО, так как центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
4. ∠ВОС = ∠АОС.
Равенство этих углов следует из равенства треугольников ВОС и АОС:
ОА = ОВ как радиусы,
∠ОАС = ∠ОВС = 90°, так как радиус, проведенный в точку касания, перпендикулярен касательной,
ОС - общая сторона, ⇒
ΔВОС = ΔАОС по катету и гипотенузе.
5. ∠ОВС = ∠ОАС = 90°, так как радиус, проведенный в точку касания, перпендикулярен касательной.
1. АО = ВО как радиусы.
2. АС = ВС как отрезки касательных, проведенных из одной точки.
3. ∠ВСО = ∠АСО, так как центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
4. ∠ВОС = ∠АОС.
Равенство этих углов следует из равенства треугольников ВОС и АОС:
ОА = ОВ как радиусы,
∠ОАС = ∠ОВС = 90°, так как радиус, проведенный в точку касания, перпендикулярен касательной,
ОС - общая сторона, ⇒
ΔВОС = ΔАОС по катету и гипотенузе.
5. ∠ОВС = ∠ОАС = 90°, так как радиус, проведенный в точку касания, перпендикулярен касательной.
С другой стороны сумма половин углов A и C (биссектриса делит угол пополам) равна 180 - AOC: A/2 + C/2 = 180 - AOC.
Умножаем это равенство на 2: A + C = 360 - 2AOC.
Подставляем сюда сумму A и C: 360 - 2AOC = 70, откуда AOC = 145 градусов.