DC=6
Объяснение:
1. рассмотрим треугольник ADC, прямоугольный с углами 60 град. и 90 град., т.к. сумма углов в прямоуг. треуг. 180 град., то оставшийся угол равен 30 град.
2. есть теорема, что катет лежащий против угла в 30 град. равен 1\2 гипотенузы, соответственно если этот катет (BD) равен 2 по условию, то гипотенуза АВ в треугольнике АDC равна 4
3. рассмотрим треугольник АВС: в нем угол С равен 30 град (см. п. 1), катет АВ, лежащий против этого угла равен 4, значит (см. п.2) гипотенуза ВС равна 8
4. Т.к. ВС=8, ВD=2, то DС=8-2=6
∠АВС = ∠АВ₁С₁ как соответственные при пересечении В₁С₁║ВС секущей АВ, ∠ВАС общий для треугольников АВС и АВ₁С₁, значит эти треугольники подобны по двум углам.
АВ : ВВ₁ = 5 : 3, значит АВ₁ : АВ = 2 : 5.
Из подобия треугольников АВС и АВ₁С₁ следует, что
АС₁ : АС = АВ₁ : АВ = 2 : 5
АС₁ : 15 = 2 : 5
АС₁ = 15 · 2 / 5 = 6 см.