Прямая, содержащая высоту равнобедренного треугольника, является и его медианой, следовательно, она является срединным перпендикуляром к хорде, и поэтому проходит через центр окружности. Обозначим исходный треугольник через ABC (AC - основание), через M - середину AC, через O - центр окружности. В прямоугольном треугольнике BOC высота CM является средним пропорциональным проекций катетов на гипотенузу, поэтому |MO| = |MC|2/|BM| = 16/3. Из прямоугольного треугольника OCM по теореме Пифагора получаем, что |OC|2 = |OM|2+|MC|2 = (20/3)2. или =
СД²=АД·ВД
СД²=3·7
СД=√21
Из ΔВСД ( угол Д=90 град ) по теореме Пифагора: ВС²=СД²+ВД²
ВС²=21+49 ВС²=70 ВС=√70
ответ:√70