В окружность вписан квадрат со стороной 9 корней из 2 см. Найдите сторону правильного треугольника, описанного около этой окружности.
ответ:18√3 (см)
Объяснение:
Диаметром окружности, описанной около квадрата, является его диагональ. Точкой пересечения диагоналей квадрат делится на 4 равнобедренных прямоугольных треугольника, гипотенузы которых - стороны квадрата, а острые углы 45°. => r=9√2•sin45°=9
Центры окружностей, вписанных и описанных около правильного треугольника, совпадают ( это точка пересечения биссектрис, которые в то же время являются его срединными перпендикулярами).
Радиус вписанной в правильный треугольник окружности находят по формуле r=a:2√3 , где а - сторона правильного треугольника. =>
a=r•2√3
a=9•2√3=18√3 (см)
1) Сторона треугольника, лежащая против прямого угла называется гипотенузой
2) Сторона треугольника, прилежащая к прямому углу называется катетом
3) Признаков равенства прямоугольных треугольников - 3
4) Катет прямоугольного треугольника, лежащий против угла в 30° равен половине гипотенузе
5) 3. Признак равенства прямоугольных треугольников по двум катетам
6) 2. Признак равенства прямоугольных треугольников по гипотенузе и катету
7) 4. Признак равенства прямоугольных треугольников по катету и острому углу
8) 1. Признак равенства прямоугольных треугольников по гипотенузе и острому углу