Высота делит основание на две равные половины.
Сумма одной боковой стороны и половины основания равна АВ+½ АС
38:2=19 см
Периметр треугольника BDC=АВ+½ АС+BD
19+8=27 см
Самое правильное решение то, что является самым простым. Но возможно, учитель требует решение с применением теоремы Пифагора,
Высота делит основание треугольника на две равных части.
Сумма боковой стороны и половины основания равна
38:2=19
Обозначим половину основания х
Длина боковой стороны равна 19-х
Боковая сторона, высота и половина основания образовали прямоугольный треугольник.
По теореме Пифагора составим уравнение:
(19-х)²=8²+х²
361-38х+х²=64+х²
38х=297
х=7³¹/₃₈ см
Длина боковой стороны равна
19-7³¹/₃₈=11 ⁷/₃₈ см
х=7³¹/₃₈ см Периметр треугольника ВСD=7 ³¹/₃₈+8+11 ⁷/₃₈=19+8=27 см
Высота делит основание на две равные половины.
Сумма одной боковой стороны и половины основания равна АВ+½ АС
38:2=19 см
Периметр треугольника BDC=АВ+½ АС+BD
19+8=27 см
Самое правильное решение то, что является самым простым. Но возможно, учитель требует решение с применением теоремы Пифагора,
Высота делит основание треугольника на две равных части.
Сумма боковой стороны и половины основания равна
38:2=19
Обозначим половину основания х
Длина боковой стороны равна 19-х
Боковая сторона, высота и половина основания образовали прямоугольный треугольник.
По теореме Пифагора составим уравнение:
(19-х)²=8²+х²
361-38х+х²=64+х²
38х=297
х=7³¹/₃₈ см
Длина боковой стороны равна
19-7³¹/₃₈=11 ⁷/₃₈ см
х=7³¹/₃₈ см Периметр треугольника ВСD=7 ³¹/₃₈+8+11 ⁷/₃₈=19+8=27 см
Меньшее основание = 6
Высота = 5
Углы при большем основании = 45 градусов
Решение:
Высота образует угол 90 градусов с большим основанием.
Образованный треугольник сбоку - равнобедренный, т.к. один угол = 90 град., второй угол = 45 град., следовательно: 180 - 90 - 45 = 45 град) (по сумме углов треугольника.
Следовательно, отрезок , образованный между высотой
и углом в 45 градусов = 5. Так как у нас получится 2 таких отрезка, то большее основание = 5 + 6 + 5 = 16.
S = (a + b)/2* h; S = (6 + 16)/2 * 5 = 11* 5 = 55
ответ: 55 - площадь трапеции