М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Glazkovanuriya
Glazkovanuriya
01.11.2020 06:41 •  Геометрия

Пирамида! решить дана правильная четырехугольная пирамида сторона основания 12, а боковое ребро 10. найти s полной поверхности.

👇
Ответ:
ryazanovaaaa18
ryazanovaaaa18
01.11.2020
1) в основании квадрат. Его площадь
Sосн =  12*12 =144
2) Боковая поверхность - 4 равнобедренных треугольника с основанием 12 и боковыми сторонами 10. Площадь одного треугольника найдем по формуле Герона

S = корень(p*(p-a)*(p-b)*(p-c)), где a,b,c - стороны треугольника, а p - его полупериметр
p = (12+10+10)/2 = 16
S=корень(16*(16-12)*(16-10*(16-10))= корень(16*4*6*6)= 4*2*6=48
S полн = Sосн+Sбок = 144 +4*48 = 144+192= 336 
4,7(64 оценок)
Ответ:
Денис29964
Денис29964
01.11.2020
Хорошо, давайте решим эту задачу.

Сперва, для нахождения площади поверхности пирамиды, нам нужно найти площади ее боковой поверхности и основания, а затем сложить полученные значения.

1. Найдем площадь боковой поверхности пирамиды.
Формула для нахождения площади боковой поверхности правильной пирамиды: Sбок = (периметр основания) * (половина высоты боковой грани).

Периметр основания можно найти, зная сторону основания. В данном случае, сторона основания равна 12, а так как у правильной пирамиды все стороны основания одинаковые, периметр будет равен 4 * 12 = 48.

Также нам нужно найти половину высоты боковой грани. Мы можем это сделать, используя теорему Пифагора.
Гипотенуза треугольника, образованного сторонами основания и боковым ребром, равна 10. А катеты равны половине стороны основания, то есть 6 (12/2).
Теперь мы можем найти половину высоты боковой грани по формуле a^2 + b^2 = c^2, где a и b - катеты, а c - гипотенуза.
6^2 + b^2 = 10^2
36 + b^2 = 100
b^2 = 100 - 36
b^2 = 64
b = √64
b = 8

Теперь, имея периметр основания и половину высоты боковой грани, мы можем найти площадь боковой поверхности по формуле:
Sбок = 48 * 8 = 384.

2. Теперь найдем площадь основания пирамиды.
Так как пирамида правильная четырехугольная, ее основание представляет собой квадрат. Площадь квадрата можно найти, возведя его сторону в квадрат.
Сторона основания равна 12, поэтому площадь основания будет равна 12^2 = 144.

3. Для нахождения полной площади поверхности пирамиды суммируем площади боковой поверхности и основания:
S = Sбок + Sосн
S = 384 + 144
S = 528.

Ответ: Площадь полной поверхности данной пирамиды равна 528 единицам площади.
4,6(76 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ