Пусть АО=ОС=r; Δ CОВ ~ Δ АМВ по двум углам ( ∠В-общий; ∠АМВ=∠ОСВ). СО:АМ=СВ:МВ; r: AM=4:6,4⇒ AM=1,6r
Рассмотрим прямоугольную трапецию МСОА. Проведем высоту СЕ. (см чертеж 2, отдельный) Из прямоугольного треугольника ОЕА по теореме Пифагора ОА²=ОЕ²+ЕА²; r²=2,4²+0,36r²; 0,64r²=5,76 r²=9 r=3.
АМ=1,6r=1,6·3=4,8
Из прямоугольного треугольника АМС по теореме Пифагора АС²=АМ²+МС²; АС²=4,8²+2,4²=(2,4·2)²+2,4²=2,4²·(2²+1)=2,4²·5 АС=2,4√5 Δ AMC ~ Δ CMD AC : BC=MC : CD; 2,4√5 : 4=4,8 : СD ⇒ CD=8√5/5=1,6√5
AD=AC+CD=2,4√5+1,6√5=4√5.
По свойству касательной и секущей, проведенных к окружности малого радиуса из точки В: произведение секущей ВА на ее внешнюю часть ВК равно квадрату касательной ВС ВА· (ВА-AK)=BC²; AK=2r=2·3=6 ВА· (ВА-6)=4²; ВА²-6ВА-16=0- квадратное уравнение. D=36+64=100 BA=(6+10)/2=8 BA=2R 2R=8 R=4
Длина L бокового ребра пирамиды равна:L = H/sinα = 6/(√2/2) = 6√2 см. б) Площадь боковой поверхности.Так как боковое ребро образует угол 45 градусов с плоскостью основания, то половина диагонали основания равна высоте пирамиды:(d/2) = H = 6 см.Сторона а основания (это квадрат) равна:а = 2*(d/2)*sin45° = 2*6*(√2/2) = 6√2 см.Периметр основания Р = 4а = 24√2 см.Апофема А = √(Н² + (а/2)²) = √(36 + 18) = √54 = 3√6 см.Sбок = (1/2)РА = (1/2)*24√2*3√6 = 72√3 см². в) Объём пирамиды V = (1/3)SoH = (1/3)a²H = (1/3)*72*6 = 144 см³.
360 градусов-100%
70нрадус-19.44444%
112градус-31.11111%
43градус-11.94444%
угол D=100-19.44444-11.94444-31.11111=37.5%