Объяснение:
1.Проведем в плоскости α прямую а’ перпендикулярно плоскости β. Две прямые, перпендикулярные одной и той же плоскости, параллельны, следовательно, а' ║а.
Если прямая вне плоскости параллельна какой нибудь прямой на ней, то эта прямая параллельна и самой плоскости. Отсюда следует, что если плоскости α и β взаимно перпендикулярны, то прямая, проведенная перпендикулярно плоскости β, параллельна плоскости α или принадлежит ей.
2.По условию плоскость АВСD перпендикулярна плоскости ∆АВМ.
Если две плоскости взаимно перпендикулярны, то прямая, проведенная в одной плоскости перпендикулярно к линии пересечения плоскостей, перпендикулярна к другой плоскости. АD ⊥ АВ (стороны квадрата). ⇒
АD перпендикулярна плоскости треугольника АВМ.
Если прямая перпендикулярна плоскости, то она перпендикулярна каждой прямой, которая лежит в этой плоскости и проходит через точку пересечения.
DA перпендикулярна плоскости ∆ АВМ, следовательно, перпендикулярна МА. Угол DАМ=90°
Точка, назовём её С(х;у;z) равноудалена от точек А(1,2,3) и В(-3,3,2).
Это означает, что расстояние АС равно расстоянию ВС.
Точка С принадлежит оси ОХ, значит её координаты равны (х;0;0)
Расстояние между точками можно определить по формуле:
sqr((x2-x1)^2+(y2-y1)^2+(z1-z2)^2), значит
sqr((х-1)^2+(0-2)^2+(0-3)^2)=sqr((x+3)^2+(0-3)^2+(0-2)^2)
(x-1)^2+4+9=(x+3)^2+9+4
(x-1)^2=(x+3)^2
x^2-2x+1=x^2+6x+9
-8x=8
x=-1
Итак, искомая точка, равноудалённая от А и В имеет координаты
С(-1;0;0)