Дано:
треугольник АВС,
угол В = угол А + 40,
угол С = 5 * угол А,
Найти градусные меры угла А, угла В, угла С - ?
Рассмотрим треугольник АВС. Нам известно, что сумма градусных мер любого треугольника равна 180 градусов. Пусть угол А = х градусов, угол В = х + 40 градусов, а угол С = 5 * х градусов. Составляем уравнение:
х + х + 40 + 5 * х = 180;
х + х + 5 * х = 180 - 40;
х + х + 5 * х = 140;
х * (1 + 1 + 5) = 140:
х * 7 = 140;
х = 140 : 7;
х = 20 градусов - угол А;
угол В = 20 + 40 = 60 (градусов);
угол С = 5 * 20 = 100 (градусов).
ответ: 20 градусов; 60 градусов; 100 градусов.
Sбок = (3/4)√3а², где а - длина его стороны.
108√3 = (3/4)√3а²
Находим а = √(108*4/3) = √(36*4) = 6*2 = 12 см.
Стороны треугольника ДОТ равны половине а, то есть в = 12/2 = 6 см,
Радиус окружности, вписанной в правильный треугольник, равен:
r = b / (2√3) = 6 / (2√3) = 3 / √3 = √3 см.
Радиусы в точки касания делят окружность на 3 дуги, градусная мера которых составляет 360 / 3 = 120°.
Площадь сектора, ограниченного двумя радиусами, проведенными в точки касания, и другой окружности, большей 180° -это 2/3 площади круга: S = (2/3)πr² = π*(2*(√3)²/3=2π см².