М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Anonumus671
Anonumus671
30.08.2020 13:27 •  Геометрия

Восновании пирамиды лежит прямоугольный треугольник с острым углом 60. радиус окружности вписаной в треугольник - 3см. все боковые грани пирамиды образуют с основанием угол 45 градусов. найти s бок.

👇
Ответ:
djkls
djkls
30.08.2020
Для начала приложу рисунок к задаче, чтобы лучше понимать суть решения. Задача по сути простая, но объяснений будет много, поскольку упоминается много различных понятий. Посмотрим на примере задачи, как их увязать в одно целое. Итак, рисунок готов.

1)Прежде чем решать задачу, необходимо понять, о чём идёт речь в условии и всё ли мы понимаем. Думаю, насчёт того, что такое пирамида и что такое прямоугольный треугольник, всё ясно. Сделаем рисунок. Прежде всего отмечу, что пирамида не является правильной - это был бы слишком хороший подарок. А вот какая пирамида у нас? Правильно - произвольная. Но вот в этом и есть основная сложность. Ведь если, скажем, у нас дана правильная пирамида, то я знаю о ней довольно много: и что в основании лежит правильный многоугольник, и что вершина пирамиды проецируется в центр основания. Это всё позволяет без труда решать задачи. А вот что здесь? Наверное, первый вопрос, который я хочу прояснить - куда попадёт высота пирамиды? На какую-то точку основания или же промахнётся мимо основания? Это хороший вопрос, потому что существует одна очень важная теорема: если все двугранные углы пирамиды при основании равны, то её вершина проецируется в центр ВПИСАННОЙ окружности основания(на самом деле, это совсем неочевидно, и это надо доказывать. Если появится интерес, обратись ко мне, я покажу, как это сделать) Смотрим в условие - у нас тот самый случай. Значит, говорим мы, вершина пирамиды спроецируется в центр вписанной в треугольник окружности. А вот ещё один вопрос по планиметрии: а где находится эта самая точка? Мы помним, что центром вписанной в треугольник окружности является точка пересечения биссектрис углов треугольника. Значит, проводим в треугольнике ABC биссектрисы CM и AN, они пересекаются в некоторой точке O(двух биссектрис достаточно, так как третья просто пройдёт через точку O). Точка O - центр вписанной в треугольник окружности. Тогда SO - высота пирамиды.
2)Когда мы более менее изобразили на чертеже базовые вещи, пора перейти к тому, что нам требуется найти. Нужно найти площадь боковой поверхности пирамиды. А это что такое? А всё просто - это просто сумма площадей всех боковых граней пирамиды(у нас это три треугольника). Значит, нам надо найти площади трёх боковых треугольников, и сложить их площади. Получим ответ задачи.

3)Приступим. Для начала я хочу построить эти самые углы между плоскостями, о которых идёт речь в задаче. Вспомним определение угла между плоскостями. Это угол между перпендикулярами к линии пересечения плоскостей, проведёнными в этих плоскостях. Иными словами, находим линию пересечения плоскостей, затем берём на ней удобную для нас точку, и в каждой плоскости проводим перпендикуляры к этой линии. Угол между этими перпендикулярами и есть угол между плоскостями. Как применить это определение к нашей задаче?
Построим угол между плоскостями SAC и BAC. Находим их линию пересечения - это AC. Теперь в плоскости ABC проведём к AC перпендикуляр - это OH. Кстати сказать, OH - ещё и радиус вписанной в треугольник окружности. Почему?Потому что окружность касается AC, а радиус окружности, проведённый в точку касания, перпендикулярен касательной. Так что, OH = 3. Теперь в плоскости ASC проведём SH. Докажем, что SH перпендикулярен AC.  Замечаем, что AC лежит в плоскости основания, OH - проекция SH на плоскость основания AC перп OH - по построению, значит, в силу теоремы о трёх перпендикулярах SH перп AC. таким образом, мы провели к линии пересечения плоскостей два перпендикуляра, угол между ними и есть угол между плоскостями. То есть, <SHO - и есть тот самый угол, поэтому <SHO = 45 градусам.
Совершенно аналогично я строю двугранные углы между другими гранями:
<SH1O = 45 градусам, <SH2O = 45 градусам.

4)Теперь найдём все стороны прямоугольного треугольника в основании. <ABC = 60 градусам, тогда <BAC = 30 градусам. Катет лежащий против угла в 30 градусов, равен половине гипотенузы. Пусть C = x, тогда AB = 2x. Найдём AC по теореме Пифагора
AC^2 = 4x^2 - x^2 = 3x^2
AC = xsqrt3
Существует формула, связывающая стороны прямоугольного треугольника с радиусом вписанной в него окружности
r = (a+b-c)/2, где r - радиус вписанной окружности, a,b - катеты, c - гипотенуза. Подставляем, решаем уравнение, находим x:
(x + xsqrt3 - 2x)/2 = 3
(xsqrt3 - x) = 6
x(sqrt3 - 1) = 6
x = 6/(sqrt3 - 1) = BC
Тогда AB = 2x = 12/(sqrt3 - 1), а AC = 6sqrt3/(sqrt3 - 1)
Таким образом, я нашёл все стороны основания,  но и ещё основания всех трёх боковых треугольников. Найдём их высоты, тогда можно будет найти их площади.

5)Для этого рассмотрю три прямоугольных треугольника SOH, SOH1 и SOH2. Они, очевидно, равны по двум катетам(катет SO - общий, OH = OH1 = OH2 = 3 - радиусы вписанной окружности). Из равенства этих треугольников вытекает, что высоты всех трёх треугольников равны, то есть SH = SH1 = SH2.

Восновании пирамиды лежит прямоугольный треугольник с острым углом 60. радиус окружности вписаной в
4,4(11 оценок)
Открыть все ответы
Ответ:
DaVinci002
DaVinci002
30.08.2020

Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 158, б). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; в) φ, если R = 2r

2.Так как параллелепипед описан вокруг цилиндра, то в основании параллелепипеда лежит квадрат со стороной равной диаметру цилиндра, т.е. . Тогда площадь квадрата (основания) будет равна , а объем

3.Так как по условию призма правильная, то CC1⊥DC и DC⊥AD. Так что по теореме о трех перпендикулярах C1D⊥AD. Далее, в прямоугольном ΔAС1D по теореме Пифагора находим:

4,8(68 оценок)
Ответ:
LolkekCHEBUREK10102
LolkekCHEBUREK10102
30.08.2020

Решение

1.  ∢   D=0,5   ∪   EF=30  °  (по свойству вписанного угла).

 

2.  ∢   Е=90  °  (т. к. опирается на диаметр);

cosD=   прилежащий катетгипотенуза=DEFD ;

 

cos30  °   =   3–√2 ;

 3–√2   =   1FD ;

 

3–√  FD   =   2⋅1 ;

 

FD   =   23–√     (умножаем на  3–√ , чтобы избавиться от иррациональности в знаменателе);

 

FD   =   2⋅3–√3  см;

 

2R=   FD   =   2⋅3–√3  см;

 

3.  C=2R  π ;

 

C=   2⋅3–√3  π  см.

 

4. Подставляем  π   ≈   3 :

 

C=   2⋅3–√3⋅3 ;

 

C=   2⋅3–√ ;

 

C=  3,46 см.

ответ: 3.46 см

4,4(76 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ