Площадь прямоугольного треугольника равна половине произведения его катетов.
Пусть угол С=90°, угол А=30°.
Тогда ВС=12•sin30°=6 см
АС=12•cos30°=6√3 см
S(∆ABC)=AC•BC:2=36√3:2=18√3 см²
Равновеликие части означает равные по площади, т.е. каждая равна половине площади данного треугольника⇒
S/2=9√3 см² площадь кругового сектора окружности с центром в вершине А.
Одна из формул площади сектора круга:
S=πr*α/360°
отсюда находим радиус по известным площади и углу α=30°:
9√3=π•r²/12
r=√(108√3/π)=7,716 см
по условию задачи точки лежат на окружности. соединим их попарно линиями проходящими через центр окружности О. получим два отрезка mn и ef, которые делятся центром окружности пополам. рассмотрим два треугольника mon и eof. сторона no равна стороне eo и сторона mo равна fo. получаем, что в наших рассматриваемых треугольника есть по две равные стороны. углы о в этих треугольниках тоже будут равны, т.к. являются вертикальными. на основании всего этого изложенного вытекает, что треугольники равны между собой, следовательно и стороны mn и ef РАВНЫ.