Решение: из определения равнобедренного Δ-ка, которое гласит, что треугольник называется равнобедренным, если у него две стороны равны( они же называются боковыми( в нашей задаче это равные боковые стороны АВ и ВС), а третья сторона называется основанием( в нашей задаче это АС) следует, что наш Δ- ик- равнобедренный. по определению: внешним углом при данной вершине(в нашей задаче при вершине А) называется угол, смежный с внутренним углом Δ-ка при этой вершине. по теореме 2.1( в учебнике Погорелова): сумма смежных углов равна 180°.То есть внешний угол при вершине А, равный 167°( по условию задачи)+ внутренний смежный ему угол при этой же вершине А= 180°. Отсюда следует, что внутренний угол при вершине А= 180°-167°, то есть равен 13°. По теореме 3.3 в учебнике по геометрии Погорелова: В равнобедренном треугольнике углы при основании равны. А это значит, что внутренние углы( угол А и угол С) при основании АС равны. Мы уже нашла угол А, он равен 13°. Значит и угол С равен 13°.
Есть формула, по которой можно определить угол правильного n-угольника. Докажем это и с шестиугольником. - угол, n - количество сторон. 120 градусов - величина одного угла в правильном шестиугольнике. Проводим диагонали BF и CF, получаем треугольник FCB. Из соседнего треугольника ABF (он равнобедренный, т.к. AF=AB) найдём углы ABF и BFA . Таким образом, угол . Проводишь треугольник CFD, он равносторонний, все углы по 60. Т.е. угол BCF=60 градусов. Картинку в личке показать могу, если что-то не получится)
Пусть дана трапеция АВСД, у которой АВ=СД=8 см, угол А=угол Д = 60 градусов, ВС=7 см.
Проводим СК ІІ АВ. СК=8см.
Треугольник КСД-равносторонний (т.к. у него все углы равны).
Значит, КД=8см.
АД=АК+КД=ВС+КД=7+8=15(см)
Средняя линия равна полусумме основ, т.е. (7+15):2=11(см)
ответ. 11 см.