6 см
Объяснение:
Так как призма прямая, ее высотой является боковое ребро.
Проведем ВK⊥AC. ВK - проекция В₁К на плоскость основания, значит
В₁К⊥АС по теореме о трех перпендикулярах, тогда
∠В₁КВ = 60° - линейный угол двугранного угла между плоскостями (АВ₁С) и (АВС).
Из прямоугольного треугольника АВС по теореме Пифагора найдем АС:
АС = √(АВ² + ВС²) = √(48 + 16) = √64 = 8 см
Найдем ВК - высоту прямоугольного треугольника АВС :
Sabc = 1/2 AC · BK = 1/2 AB · BC
BK = AB ·BC / AC = 4√3 · 4 / 8 = 2√3 см
ΔВВ₁К: tg∠B₁KB = BB₁ / BK
BB₁ = BK · tg60° = 2√3 · √3 = 6 см
Пусть дан ромб АВСД. Диагонали ромба АС и ВД при пересечении делятся попалам и пересекаются под прямым углом. Точкой пересечения пусть будет точка О. Пусть опущен перпендикуляр на сторону АД из точки О и образует точку Е. Рассмотрим треугольник АОД. Он прямоугольный, угол АОД=90, половины диагоналей являются катетами, а сторона ромба-гипотенуза. Высота прямоугольного треугольника проведенная из вершины прямого угла,есть среднее пропорциональное для отрезков на которые делится гипотенуза этой высотой,т.е. ОЕ=корень квадратный из 48*27=36см. Перпендикуляр делит треугольник АОД на два прямоугольных треугольника АЕО и ДЕО. Из треугольника АЕО по теореме Пифагора найдем половину первой диагонали,т.е. сторону АО. АО=корень квадратный из AE^2+OE^2=
=корень квадратный из 2304+1296=60см. Раз половина первой диагонали равна 60,то вся диагональ,т.е. АС=120см. Теперь так же по теореме Пифагора найдем половину другой диагонали из треугольника ДЕО. ОД=корень квадратный из OE^2+EД^2=корень квадратный из 729+1296=45см, тогда вся диагональ ВД=90см.
х+8 - основа
2х+х+8=73 періметр
3х=65
х=65/3=
основа 65/3+8=89/3=