М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vlada2207
vlada2207
24.03.2022 10:50 •  Геометрия

Основания равнобедренной трапеции 5,1 дм и 6,5 дм боковая сторона 41 см найти площадь трапеции

👇
Ответ:
NeZoXshock
NeZoXshock
24.03.2022
Площадь трапеции равна произведению полусуммы оснований на высоту. Найдём высоту. Т .к. трапеция равнобедренная, то высота, опущенная из любой из крайних точек верхнего основания, будет отсекать равные отрезки на нижнем основании трапеции. Они составят (6,5 дм- 5,1 дм) : 2 = (65 см - 51 см) : 2 =  7 см. Имеем дело с прямоугольным треугольником, который образовывает высота. Найдём её по Т. Пифагора:  корень из (41 в квадрате - 7 в квадрате) = примерно 40,4 (см). Теперь находим площадь трапеции : (51 +65) :2 *40,4 = 2343,2 (см в квадрате) = примерно 23,43 кв дм.
4,6(83 оценок)
Открыть все ответы
Ответ:
Dashulechka123456
Dashulechka123456
24.03.2022

Площади оснований правильной четырехугольной пирамиды - если площади ДВЕ,значит пирамида усеченная.

S1 =  4 см2  -квадрат со стороной x=√S1 =√4 = 2 см -диагональю a=x√2=2√2 см

S2=64 см2  -квадрат со стороной y=√S2 =√64 = 8 см-диагональю b=y√2=8√2 см

Тогда площадь диагонального сечения пирамиды - это равнобедренная трапеция с острым углом 45° , верхнее основание  a = 2√2см ; нижнее основание  b = 8√2 см ; 

высота трапеции h = (b-a)/2 *tg45 = (8√2-2√2)/2*1=3√2 см

площадь диагонального сечения  S = (a+b) /2 *h= (8√2+2√2)/2*3√2=30 см2

ОТВЕТ 30 см2

4,4(77 оценок)
Ответ:
настячччч
настячччч
24.03.2022
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота,
РА=РВ=РС=6 см

1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)

2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3  = √69 (см) - это длина стороны основы.

3. Находим периметр основы.
Р=3а
Р=3√69 см

4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)

5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)

ответ. 11,25 √23 см².
4,4(5 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ