)2 участка огорожены заборами одинак длины 1 имеет форму прямоугольника со сторонами 12 м и 3 м а 2 форму квадраа найти площадь каждого участка (пириметр одинак)
Синус - отношение противолежащего катета к гипотенузе. Косинус - отношение прилежащего катета к гипотенузе. Тангенс - отношение противолежащего катета к прилежащему.
1)Что значит синус 3/5? Это значит, что противолежащий катет равен 3 см, а гипотенуза равна 5 см. Начертим прямоугольный треугольник и сотрем катет, равный 3 см. Получим искомый угол. 2) То же самое делаем и с косинусом, то есть прилежащий катет будет равен 5, а гипотенуза равна 6 см. Опять же, стоите прямоугольный треугольник с прилежащим катетом 5 см и гипотенузой 6 см. Сотрете неизвестный катет и получите искомый угол. 3) С тангенсом дело будет иначе. Тангенс - отношение противолежащего катета к прилежащему. Строите прямоугольный треугольник. То есть один катет будет равен 2 см, а второй 1 см. Дальше достраиваете гипотенузу и сотрете катет, который равен 2 см. 4) 0.4 = 4/10 = 2/5. То есть в прямоугольном треугольнике противолежащий катет будет равняться 2 см, а гипотенуза 5 см. Достроите второй катет. В итоге получите искомый треугольник с синусов 0,4
1. Боковая поверхность усечённого конуса находится по формуле:S=πL(r+R), где L - образующая, а r и R - радиусы оснований. 2. Из условия можно найти, что 120π=10π(r+R), откуда r+R=12. 3. В сечении такой конус представляет из себя равнобедренную трапецию, разделённую пополам (вертикально) высотой конуса, которая по условию равна 8. Одна половина представляет из себя прямоугольную трапецию, в которой высота равна 8, боковая сторона 10, а r и R- основания. 4. Из прямоугольной трапеции по т. Пифагора можно найти разность R-r. Она равна 6. Тогда, зная, что r+R=12 и R-r=6, находим, что r=3, а R=9
-плозадь первого равна: 12*3=36м^2
-найдем его периметр: 2(12+3)=30м,следовательно и периметр квадратного участва равен 30м
-находим сторону квадрата по формуле "периметр квадрата": P=4a
30=4a
a=7.5
итак, сторона квадрата 7,5, находим его площадь: 7,5^2=56.25
ответ: 36 , 56.25