Х - радиус меньшей окружности; у - радиус большей окружности; х/у=3/7 у-х=16 ⇒у=х+16; х/(х+16)=3/7; 7х=3х+48; 4х=48; х=12 см - меньший радиус; у=12+16=38 см больший радиус.
Будем рассматривать ΔВЕС и ΔDАВ. 1. Рассмотрим Δ ВЕС: СЕ=ВС(по усл.)⇒ΔВЕС - равнобедренный(по опр.) Найдем ∠ВСЕ. Он смежен с ∠ВСА, то есть в сумме они дают 180°(по св-ву смежных углов): 180-76=104 Найдем ∠СЕВ и ∠СВЕ. ∠СЕВ=∠СВЕ(по св-ву равнобедренного Δ) ∠СЕВ==38 2. Рассмотрим Δ DAВ: DA=АВ(по усл.)⇒Δ DAВ - равнобедренный(по опр.) Найдем ∠DAВ. Он смежен с ∠ВАС(или является внешним углом треугольника АВС и равен сумме углов не смежных с ним), тогда: 180-48=132 Найдем ∠ADВ и ∠DBA. Они равны(по св-ву равноб.Δ) ∠ADВ==24 3.Вернемся к исходному ΔDBE: ∠D=24 ∠E=38 ∠В - можно найти, сложив 24,56 и 38(найденные углы), а можно воспользоваться теоремой о сумме ∠Δ(сумма равна 180). 180-24-38=118 ответ: 24,38,118
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
R = 7x
r = 3 x
R - r = 7x - 3x= 4x
4x = 16
x = 16 : 4 = 4 длина одной части
R = 4 * 7 = 28
r = 3 * 4 = 12
ответ R = 28 r = 12