ответ: Дано:
∆АВС - рівнобедрений; АС - основа; BD - бісектриса;
М є BD. АВ ‖ ME; ВС ‖ MF. Довести: DE = DF.
Доведения:
За умовою ∆АВС - рівнобедрений (АВ = ВС).
За умовою BD - бісектриса.
За властивістю piвнобедреного трикутника маємо: BD - висота.
BD ┴ АС, тобто ∟MDE = ∟MDF = 90°.
За властивістю кутів р1внобедреного трикутника маємо: ∟A = ∟C.
За умовою АВ ‖ ME; AC - січна, тоді за ознакою паралельності прямих маємо: ∟BAC = ∟MEC (відповідні).
Аналогічно: MF ‖ ВС; АС - січна, ∟BCA = ∟MFA.
Якщо ∟A = ∟C; ∟A = ∟MED; ∟C = ∟MFD, тоді ∟MEF = ∟MFE.
Тодф ∆EMF - рівнобедрений. MD - висота, тоді MD - медіана, отже DE = EF.
Доведено.
Объяснение:
Объяснение:
1а) в приложенном файле.
1б)ΔKMN-прямоугольный , по свойству угла 30°⇒ KN=0,5*36=18.
Пусть NP=х , тогда РМ=36-х. Катет в прямоугольном треугольнике есть среднее пропорциональное между проекцией и гипотенузой : KN=NP*NM или 18²=х*36 , х=9, NP=9 , РМ=36-9=27
2б)
1)ΔСЕD=ΔCFD как прямоугольные по катетам ЕD=DF и гипотенузе CD-общая. В равных треугольниках соответственные элементы равны :∠ЕCD=∠FСD и СЕ=СF.
2)∠АЕD=∠ВFD=90.
ΔАЕD=ΔВFD как прямоугольные по катетам ЕD=DF и гипотенузам АD=DВ . В равных треугольниках соответственные элементы равны : АЕ=ВF и ∠А=∠В.
3) Т.к АЕ=ВF и
СЕ=СF , то АС=ВС.
ΔАСD=ΔВСD по стороне и двум прилежащим углам : АС=ВС, ∠ЕCD=∠FСD, ∠А=∠В.
2а) в приложенном файле.
2б)ΔKMN-прямоугольный , по свойству угла 30°⇒ KN=0,5*36=18.
Пусть NP=х , тогда РМ=36-х. Катет в прямоугольном треугольнике есть среднее пропорциональное между проекцией и гипотенузой : KN=NP*NM или 18²=х*36 , х=9, NP=9 , РМ=36-9=27