Высота АМ расположена против угла С. а CН - угла В.. АМ = АС*sin C. СН = СВ*sin В. Так как АС = СВ, то высоты относятся как синусы углов С и В. C = 180 - 2B sin C = sin 2B = 2sin B*cos B sin B = √(1-cos²B) = √(1-1/9) = √(8/9) = 2√2/3. sin C = 2*(2√2/3)*(1/3) = 4√2/9. Отсюда соотношение высот АМ и СН треугольника ABC составляет:(4√2/9) / (2√2/3) = (4√2*3) / (9*2√2) = 2/3.
Удаленное решение пользователя TwilightStar2016 верное, за исключением досадной описки в конце. Вот оно: Решение. 1)MN-касат. OE-r-следовательно <MEK=90º=>KE-высота, медиана, биссектриса. КЕ-медиана=>МЕ=ЕN=20:2=10 2)OD-r MK-касат=><KDO=90º 3)Рассмотрим треу. MEK и DOK. <MEK-общий, <KDO=<MEK=>треу. MEK ~ DOK.(по двум углам) 4)MN и MK-касат.,MD-10=>ME=MD (по двум касат.) DK=MK-MD=26-10=16см. 5) треу. MKE-прямоуг. MK^2=ME^2+EK^2(теорема Пифагора. ) EK=корень ME^2-MK^2=корень из 676-100=корень из 576=24. 6)Отношение. 10/OD=24/16=26/OK 24/16=26/OK 24×OK=16×26 24OK=416 OK=416:21 OK=17целых1/3 OE=EK-OK=24-17целых1/3=6целых2/3 (а не 6и1/3, как было в ответе). Можно было решить так: По формуле радиуса вписанной в треугольник окружности: r=S/p, где S - площадь, а "р" - полупериметр треугольника. У нас р=(26+26+20):2 = 36. S=√[p(p-a)((p-b)(p-c)] - формула Герона. S=√(36*18*18*16)=240. r=240/36=6и2/3. ответ: r=6и2/3.
Это же элементарно! Обозначим углы ромба буквами A;B;C;D Есть такое правило, что диагонали ромба точкой пересечения делятся попалам а все стороны равны, следовательно рассмотрим треугольник ABO: AB=30см BO=15 см т. к половина диагонали. И получается прямоугольный треугольник ABO По теореме пифагора ищим сторону AO 30^2=15^2+x Считаем и получаем x Х у нас будет 1/2 от второй диагонали а значит вторая диагональ равна в 2 раза больше. Ну а площадь ромба равна 1/2 произведения диагоналей а тоесть 30*2x*1/2 удачи)
АМ = АС*sin C.
СН = СВ*sin В.
Так как АС = СВ, то высоты относятся как синусы углов С и В.
C = 180 - 2B
sin C = sin 2B = 2sin B*cos B
sin B = √(1-cos²B) = √(1-1/9) = √(8/9) = 2√2/3.
sin C = 2*(2√2/3)*(1/3) = 4√2/9.
Отсюда соотношение высот АМ и СН треугольника ABC составляет:(4√2/9) / (2√2/3) = (4√2*3) / (9*2√2) = 2/3.