В шестиугольной призме по три диагонали выходят из каждой вершины - две равных и одна наибольшая. Пусть сторона призмы будет равна а. Тогда проекция большей диагонали F₁C равна наибольшей диагонали FC основания и равна 2а. Проекция диагонали F₁B соединяет вершины F и B основания и образует равнобедренный треугольник, в котором половина FB равна а*sin (60°), а вся FB=а√3 Для наглядности я в рисунке "развернула" треугольник BFF₁ так, что он с треугольником CFF₁ составили один треугольник CF₁B с общей высотой FF₁ Выразим эту высоту по т. Пифагора из каждого треугольника: FF₁²=F₁C²-FC² FF₁²=F₁B²-FB² Приравняем правые части уравнений: F₁C²-FC²=F₁B²-FB² 8²-(2а)²=7²-(а√3)² 64-49=4а²-3а² а²=15а=√15 Подставим это значение в уравнение FF₁²=64 - 60 FF₁²=4 FF₁=2
Дано: треугольник АВС, угол А = 90°, BD - медиана треугольник KLM, угол K = 90°, LN - медиана AB = KL, BD = LN Доказать: треугольник АВС = треугольнику KLM Доказательство: Рассмотрим треугольники ABD и KLN. Эти треугольники равны по катету и гипотенузе: AB=KL, BD=LN (по условию) В равных треугольниках стороны и углы соответственно равны, следовательно, AD = KN Рассмотрим треугольники ABC и KLM. В этих треугольниках BD и LN являются медианами, значит, AD=DC и KN=NM Но, как мы только что доказали, AD = KN Значит, AC = KM По условию AB = KL Следовательно, треугольники ABC и KLM равны по двум катетам, что и требовалось доказать
Указание. Если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный. Задача сводится к построению прямоугольного треугольника по катету и гипотенузе.
Решение. С центром в произвольной точке построим окружность, радиус которой равен данной медиане. Проведём произвольный диаметр AB этой окружности. С центром в точке Aпостроим окружность, радиус которой равен данному катету. Пусть C — одна из точек пересечения построенных окружностей. Тогда медиана CM (радиус первой окружности) треугольника ABC равна половине стороны AB (диаметр первой окружности), следовательно, ABC — искомый прямоугольный треугольник.
Пусть сторона призмы будет равна а.
Тогда проекция большей диагонали F₁C равна наибольшей диагонали FC основания и равна 2а.
Проекция диагонали F₁B соединяет вершины F и B основания и образует равнобедренный треугольник, в котором половина FB равна а*sin (60°), а вся FB=а√3
Для наглядности я в рисунке "развернула" треугольник BFF₁ так, что он с треугольником CFF₁ составили один треугольник CF₁B с общей высотой FF₁ Выразим эту высоту по т. Пифагора из каждого треугольника:
FF₁²=F₁C²-FC²
FF₁²=F₁B²-FB²
Приравняем правые части уравнений:
F₁C²-FC²=F₁B²-FB²
8²-(2а)²=7²-(а√3)²
64-49=4а²-3а²
а²=15а=√15
Подставим это значение в уравнение
FF₁²=64 - 60
FF₁²=4
FF₁=2