Вершины треугольника делят описанную около него окружность на три дуги длины которых относятся как 3 7 8 найдите радиус окружности если меньшая из сторон равна 20
1. возьмем за х-угол D, тогда х+40-угол F, х\3- угол E, сумма углов в треугольнике 180 градусов. составляем уровнение х+х+40+х/3=180 избавляемся от дроби в уравнении,для этого домножаем все на 3 3х+3х+120+х=540 7х=420 х=60-это угол D 60+40=100-это угол F 60:3=20-это угол E 2. Решение: 180-120=60 - угол Z По теореме: напротив угла 30 градусов лежит сторона = половине гипотенузы. угол XYZ= 90-60=30, значит YX= 1/2YZ, YZ= 7×2=14 ответ: YZ=14см 3. Так как треугольник равнобедренный то угол K равен углу M PA=PB по теореме о гипотенузе и остром углу Делать нечего!)
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
меньшая дуга =3*20° =60° ;
меньший угол = 60°/2 =30° (вписанный угол) .
a/sin30° =2R ⇒R =a/2*sin30° =20/2*1/2 =20 .
R=20 .