ответ:
6) х=5; у=10; а=15
объяснение:
№6
1) рассмотрим большой треугольник с основанием 20
2) у-средняя линия, т.к. делит стороны пополам
3) следовательно она равна половине основания; у= 20: 2= 10 см
4) рассмотрим трапецию с основаниями 20 и 10 см
5) а-средняя линия, т.к. делит стороны пополам
6) следовательно она равна половине суммы оснований; а= (20+10) : 2=15 см
7) рассмотрим маленький треугольник с основанием 10 (у)
8) х- средняя линия, т.к делит стороны пополам
9) следовательно она равна половине основания; х= 10 : 2=5
Диагональное сечение прямой призмы - прямоугольник, сторонами которого являются диагонали оснований и боковые ребра.
Площадь диагонального сечения призмы равна произведению диагонали ее основания на высоту ( ребро прямой призмы)
Scечения=dh
Пусть высота данной прямой призмы ( ее боковое ребро) равна х
Тогда меньшая диагональ ромба ( основания призмы) равна 9/х,
а большая диагональ - 12/х
Диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам
.
Найдем сторону ромба из прямоугольного треугольника, получившегося при пересечении
диагоналей.
Половины диагоналей - 9/2х и 12/2х
Сторона ромба а, вычисленная по теореме Пифагора, равна
а=√(81/4х²+144/4х²)=7,5/х
Площадь боковой грани прямой призмы равна произведению стороны основания на высоту призмы.
S=х·7,5/х=7,5
Боковых граней 4, площадь боковой поверхности
Sбок=4·7,5=30