1. По теореме Пифагора:
АВ² = АС² + ВС²
АВ² = 6² + 8² = 36 + 64 = 100
АВ = 10 см
2. Проведем высоты трапеции ВН и СК.
ВН ║ СК как перпендикуляры к одной прямой,
ВН = СК как расстояния между параллельными прямыми, значит
ВНКС - прямоугольник, ⇒
НК = ВС = 6 см.
ΔАВН = ΔDCK по гипотенузе и острому углу (АВ = CD так как трапеция равнобедренная, ∠BAH = ∠CDK как углы при основании равнобедренной трапеции), ⇒ АН = KD.
АН = KD = (AD - HK)/2 = (14 - 6)/2 = 8/2 = 4 см
ΔАВН: ∠АНВ = 90°, по теореме Пифагора:
AB² = ВН² + АН²
ВН² = АВ² - АН²
ВН² = 5² - 4² = 25 - 16 = 9
ВН = 3 см
Sabcd = (AD + BC)/2 · BH
Sabcd = (14 + 6)/2 · 3 = 10 · 3 = 30 см²
Пирамида правильная, значит в основании лежит квадрат, а боковые грани - равные равнобедренные треугольники.
Sпов = Sосн + Sбок
Sосн = а² = 6² = 36 (а - сторона квадрата)
Боковая поверхность - 4 одинаковых равнобедренных треугольника со сторонами 5, 5 и 6. Можно найти площадь одного треугольника по формуле Герона.
Полупериметр: p = (5 + 5 + 6)/2 = 8
Ssad = √(p(p - a)(p- b)(p - c))
Ssad = √(8 · 3 · 3 · 2) = 3 · 4 = 12
Sбок = 4 · Ssad = 4 · 12 = 48
Sпов = 36 + 48 = 84
Площадь боковой поверхности правильной пирамиды можно найти также по формуле:
Sбок = 1/2 Pосн · h, где h - апофема (высота боковой грани), которую можно найти по теореме Пифагора.