ответ: (x-3/1)²+y²=(5/1)².
Объяснение:
Уравнение окружности с центром в точке О(a;b) и радиусом R имеет вид: (x-a)²+(y-b)²=R². Так как в нашем случае центр окружности находится на оси OX, то b=0 и уравнение окружности принимает вид: (x-a)²+y²=R². Подставляя в него координаты точек (8;0) и (0;4), получаем систему уравнений:
(8-a)²+0²=R²
(0-a)²+4²=R²,
или:
(8-a)²=R²
a²+16=R².
Приравнивая левые части, приходим к уравнению 64-16*a=16. Отсюда a=3 и R=5. Тогда уравнение окружности имеет вид: (x-3)²+y²=5², или (x-3/1)²+y²=(5/1)²
и пусть через точку можно провести прямую так, чтобы она не являлась секущей, те имела с окружностью 1 или 0 точек пересечения. Но о точек перес прямая иметь не может тк имеется одна точка, принадлежащая прямой и находящаяся внутри окружности. Получаем 1 т перес. 1 т перес. с прямой это касательная, но касательная проходит через точку на окружности, следовательно тА лежит на окружности, следовательно расстояние от А до центра = радиусу, что противоречит условию. имеем 2 т пересечения.