треугольник DBC-равнобедренний,так как угол С=35 градусов и угол DBC 35 градусов.
Из этого следует,что в этом труегольнике больший угол BDC,значит, сторона ВС в этом треугольнике самая большая(напротив большего угла лежит большая сторона)
В треугольнике АВD большая сторона BD(так как угол А=75 градусов-самый большой)
А BD=DC(так как треугольник DBC-равнобедренний) и эти стороны меньше ВС.
Из всего этого следует,что AD<BC,так как большая сторона(BD) треугольника ABD меньше большой стороны(BC) треугольника DBC.
Значит и меньшая сторона(AD) треуг. ABD будет меньше большей стороны(BD) треугольника ABD.
AD<BC
Из за того, что один из отрезков равен радиусу, угол треугольника с вершиной в конце этого отрезка - прямой (там получается ромб из 2 отрезков касательных и из 2 радиусов, ясно что это квадрат, поскольку углы между касательными и радиусами в точки касания прямые).
Для прямоугольного треугольника стороны a = 4 + 5 = 9; b = x + 4; c = x + 5; связаны теоремой Пифагора. (x - единственный неизвестный из отрезков, на которые точки касания вписанной окружности делят стороны)
(x + 4)^2 + 9^2 = (x + 5)^2;
4^2 + 9^2 - 5^2 = 2*x;
x = 36;
Стороны 9, 40, 41, это известная Пифагорова тройка (наподобие 3,4,5 или 5,12,13)
#4 Примем меньший катет за a
а=
а=2
#5 Примем гипотенузу за с, высота -h, неизвестный отрезок гипотенузы- x
с=16+9=25
#6 По свойству средней линии боковая сторона будет равна 2•6=12
Р=10+12+12=34