углы BОD и СОЕ равны
Объяснение:
Мы можем видеть, что у углов АОЕ и ВОF имеется общая часть, угол ВОЕ.
Так как из условия "Углы АОЕ и ВОF на рисунке 45 равны", и мы вычтем из углов их общую чать, то получим, что угол ЕОF равен углу ВОА.
А так как ОВ и OE — биссектрисы углов АОС и DOF, то можем сделать вывод, что угол DOЕ равен углу СОВ.
Углы BОD и СОЕ можно представить как сумму общей для углов части, угол DOС с соответствующими углами СОВ и DOЕ. И так как угол DOЕ равен углу СОВ, следует, что углы BОD и СОЕ равны.
Обозначим середину стороны DС буквой K. Координаты точки K ищем по формуле деления отрезка пополам
\begin{lgathered}x_K=\dfrac{x_D+x_C}{2}=\dfrac{8+(-4)}{2}=2\\ y_K=\dfrac{y_D+y_C}{2}=\dfrac{-2+(-2)}{2}=-2\end{lgathered}
x
K
=
2
x
D
+x
C
=
2
8+(−4)
=2
y
K
=
2
y
D
+y
C
=
2
−2+(−2)
=−2
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
\begin{lgathered}\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}\\ \\ \\ \dfrac{x-(-2)}{2-(-2)}=\dfrac{y-6}{-2-6}~~~\Rightarrow~~~\dfrac{x+2}{4}=\dfrac{y-6}{-8}~~~\Rightarrow~~~ \boxed{y+2x-2=0}\end{lgathered}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
2−(−2)
x−(−2)
=
−2−6
y−6
⇒
4
x+2
=
−8
y−6
⇒
y+2x−2=0
ответ: y + 2x - 2 = 0.