Объяснение:
ЗАДАЧА 6
ДАНО: ∆АВС прямоугольный, <С=90°, <А=60°, АС=4
НАЙТИ: АВ
РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°, поэтому <В=90–60=30°
Катет АС, лежащий напротив него равен половине гипотенузы, поэтому гипотенуза АВ=2×4=8
ОТВЕТ: АВ=8
ЗАДАЧА 7
ДАНО: ∆АВС - прямоугольный, <С=90°, АС=ВС, СД=6
НАЙТИ: АВ
Если АС=ВС, то этот треугольник равнобедренный, а высота СД, проведённая из вершины прямого угла также является медианой и биссектрисой, а медиана, проведённая из вершины прямого угла равна половине гипотенузы, поэтому СД=½АВ или АВ =2СД=2×6=12
ОТВЕТ: АВ=12
ЗАДАЧА 8
ДАНО: ∆ АВС - прямоугольный, <А:<В=2:1, АВ=14, <С=90°
НАЙТИ: АС
РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°. Обозначим пропорции 2:1 как 2х и х и составим уравнение:
2х+х=90
3х=90
х=90÷3=30°
Итак: угол В=30°, тогда угол А=2×30=60°
Так как АС лежит напротив угла 30°, то АС=½АВ=½×14=7
ОТВЕТ: АС=7
ЗАДАЧА 9
ДАНО: ∆АВС прямоугольный: <С=90°, АС=ВС=10, АМ=СМ, МР перпендикулярно АС.
НАЙТИ: МР
РЕШЕНИЕ: МР делит катет АС пополам, поэтому АМ=СМ=10÷2=5.
МР является средней линией ∆АВС и если МР перпендикулярно АС, тогда он будет параллелен ВС. По свойствам средней линии треугольника МР=½ВС=½×10=5.
Можно также использовать средней линии, так как она является средней линией в равнобедренном треугольнике, а наш треугольник АВС именно равнобедренный, то МР отсекает от ∆АВС треугольник АРМ подобный ∆АВС. Поэтому ∆АРМ также является равнобедренным, у которого катеты АМ=РМ=5
ЗАДАЧА 10
ДАНО: ∆АВС - прямоугольный, <С=90°, <А=30°, ВК - биссектриса <В=8
НАЙТИ: АС
Так как сумма острых углов прямоугольного треугольника составляет 90°, то <В в ∆АВС=90–30=60°. Поскольку ВК - биссектриса, то она делит <В пополам поэтому <СВК=<АВК=60÷2=30°
Рассмотрим ∆АВК. В нём <АВК=<А=30°, из чего следует что ∆АВК - равнобедренный, поэтому ВК=АК=8
Рассмотрим ∆СВК. Он прямоугольный, и ВС и СК - катеты, а ВК - гипотенуза. В нём <СВК=30°, а катет СК, лежащий напротив него равен половине гипотенузы ВК, поэтому СК=½×ВК=8÷2=4
Итак: АК=8, СК=4.
Тогда АС=СК+АК=4+8=12
ОТВЕТ: АС=12
Дано: АМ и ВМ - наклонные.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Найти: АМ и ВМ
Пусть ВМ у нас Х см, тогда АМ по условию 2Х см
Т.к. по условию АС и ВС - проекции АМ и ВМ, то МС⊥ плоскости а по определению.
Мы получили два прямоугольных треугольника АМС и ВМС, где наклонные - гипотенузы, а МС - общий катет, который можно найти по теореме Пифагора.
Из Δ АМС катет МС = (2Х)² - АС²
Из Δ ВМС катет МС = Х² - ВС²
Приравняем выражения для одного и того же катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Подставим значения проекций и решим уравнение относительно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- это сторона ВМ
2Х = 4*2 = 8 (см) это сторона АВ
ответ: ВМ = 8 см; АМ = 4 см
Дано: АМ і ВМ - похилі.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Знайти: АМ і ВМ
Рішення:
Нехай ВМ у нас Х см, тоді АМ за умовою 2Х см
Оскільки за умовою АС і ВС - проекції АМ і ВМ, то МС⊥ площині а за визначенням.
Ми отримали два прямокутних трикутника АМС і ВМС, де похилі - гіпотенузи, а МС - спільний катет, який можна знайти за теоремою Піфагора.
З Δ АМС катет МС² = (2Х)² - АС²
З Δ ВМС катет МС² = Х² - ВС²
Приравняем вирази для одного і того ж катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Підставимо значення проекцій і вирішимо рівняння відносно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- це сторона ВМ
2Х = 4*2 = 8 (см) це сторона АВ
Відповідь: ВМ = 8 см; АМ = 4 см
bc²=ac²+ab²-2ac*ab*cosa
сosa=(ac²+ab²-bc²)/2ac*ab
А если у тебя ab=18 ,то все стороны- равны, а это правильный треугольник
С углами по 60°
cos60°=1/2