Центр окружности, проходящей через точки А и В, равноудален от этих точек. А все точки, равноудаленные от концов отрезка АВ, лежат на серединном перпендикуляре к нему. Т.е. центр окружности, проходящей через точки А и В, лежит на серединном перпендикуляре к отрезку АВ.
Наименьшее расстояние от точек А и В до прямой а - длина перпендикуляра, проведенного к а, т.е. R = HA = HB = 1 см. Если же центр окружности не совпадает с точкой Н, то радиус будет больше, чем НА (гипотенуза ОА в прямоугольном треугольнике АОН больше катета НА).
Если вокруг прямоугольного треугольника описана окружность, то гипотенуза этого треугольника является диаметром описанной окружности. Всегда.
Следовательно, данный треугольник имеет катет 3, гипотенузу 2,5·2=5, и неизвестный катет х, который небоходимо найти.
Можно сделать это при теоремы Пифагора:
х=√(5²-3²)=4,
а можно просто вспомнить, что прямоугольный треугольник, в котором гипотенуза равна 5, а один из катетов равен 3, является "египетским", соотношение сторон в котором равно 3:4:5. Поэтому без вычислений - второй катет данного прямоугольного треугольника равен 4.
углы A+C=x,следует x+2x=180,x=60
внешний =60
угол В=2*60=120.значит углы A+C=180-120=60
углы A=C=60/2=30