Самая распространенная формула для вычисления площади трапеции - S = (a+b)h/2. Для случая равнобедренной трапеции она явным образом не поменяется. Можно лишь отметить, что у равнобедренной трапеции углы при любом из оснований будут равны (DAB = CDA = x). Так как ее боковые стороны тоже равны (AB = CD = с), то и высоту h можно посчитать по формуле h = с*sin(x).
Тогда S = (a+b)*с*sin(x)/2.
Аналогично, площадь трапеции можно записать через среднюю сторону трапеции: S = mh.
h = диаметру окружности, т. е 6
итак площадь = 6*10=60
1).Противоположные углы параллелограмма равны: одна пара одинаковых углов - острые углы, другая пара одинаковых противоположных углов - тупые углы. Сумма одного острого и одного тупого угла в параллелограмме равна 180°.
Сумма всех четырех углов параллелограмма равна 360° .
Если сумма двух углов равняется 168°, значит углы противоположные и при этом острые. Противоположные углы равны между собой, значит оба противоположных угла- острые- 168 : 2 = 84°.
Значит другие противоположные углы - тупые - 180° - 84° = 96°.
(или так (360-168) : 2 = 96° ).
3).Сумма одного острого и одного тупого угла в параллелограмме равна 180°.
Задачу решим с уравнения, где х° - острый угол А (т. к. он меньший, значит он острый);
Тогда: 5х° - угол В (т. к. он в пять раз больше угла А);
Составим и решим уравнение:
х + 5х = 180°;
6х = 180°;
х = 180 / 6;
х = 30° - угол A = углу C (так как они противоположны );
5х = 5 * 30° = 150° - угол B = углу D (так как они противоположны). Это и есть тупые углы.
ответ: 150°
R² = 25
R = 5
H = 2R = 10
S бок= 2π R H = 2 π·5·10 = 100π (cм²)