Основою похилого паралелепіпеда є прямокутник зі сторонами 4 см і 6 см. бічне ребро дорівнює 2 см й утворює із суміжними сторонами основи кути в 60°. знайти об’єм па- ралелепіпеда.
Основанием наклонного параллелепипеда является прямоугольник со сторонами 4 см и 6 см. Боковое ребро равно 2 см и образует со смежными сторонами основания углы в 60°. Найти объем параллелепипеда.
* * *
Объем параллелепипеда равен произведению площади его основания на высоту. V=S*h
Т.к. основание - прямоугольник, его площадь равна произведению сторон. S=4*6=24 см² Высоту параллелепипеда нужно найти.
Сделаем рисунок. Ребро АА₁ образует со смежными сторонами основания углы А₁АМ и А1АК в 60° .⇒ высоты смежных боковых граней равны. А₁М=А₁К=АА1•sin60=√3 см. АК=АМ=АА1•cos60°=2•1/2=1 см.
Высоты боковых граней – наклонные к плоскости основания, и, так как они равны, равны и их проекции на АВСD. По т. о 3-х перпендикулярах НМ⊥АD, НК⊥АВ. МН=КН=АМ=АК=1. АМНК - квадрат. Перпендикуляр А1Н к основанию АВСD – высота параллелепипеда Из ∆ А1НК по т. Пифагора А1Н=√(A1K²-HK²)=√(3-1)=√2 Объем параллелепипеда V=S•H=24•√2=24√2 ед. объема.
. В треугольнике ABC угол C равен 90 градусов, BC=18, tgA= (4√65)/65.Найдите высоту CH.Тангенс находят делением катета, противолежащего углу, к катету прилежащемуСложность здесь в основном в вычислениях - числа довольно неудобные. tgA=BC:ACtgA=(4√65):65умножим обе части отношения на √65 и получим(4*√65):65=4:√65BC:AC=4:√654AC=BC*√65АС=(18√65):4= (9√65):2Треугольники АВС и АНС подобны по свойству высоты прямоугольного треугольника. Найдем гипотенузу АВ:АВ=√(ВС²+АС²)=√(324+81*65:4)=√(6561/4)АВ=81/2ВС:СН=АВ:АС18:СН=(81/2):{(9√65):2}18 CH=9:√65CH=18:(9:√65)=2√65
. В треугольнике ABC угол C равен 90 градусов, BC=18, tgA= (4√65)/65. Найдите высоту CH. Тангенс находят делением катета, противолежащего углу, к катету прилежащему Сложность здесь в основном в вычислениях - числа довольно неудобные. tgA=BC:AC tgA=(4√65):65 умножим обе части отношения на √65 и получим (4*√65):65=4:√65 BC:AC=4:√65 4AC=BC*√65 АС=(18√65):4= (9√65):2 Треугольники АВС и АНС подобны по свойству высоты прямоугольного треугольника. Найдем гипотенузу АВ: АВ=√(ВС²+АС²)=√(324+81*65:4)=√(6561/4) АВ=81/2 ВС:СН=АВ:АС 18:СН=(81/2):{(9√65):2} 18 CH=9:√65 CH=18:(9:√65)=2√65 -------- [email protected]
Основанием наклонного параллелепипеда является прямоугольник со сторонами 4 см и 6 см. Боковое ребро равно 2 см и образует со смежными сторонами основания углы в 60°. Найти объем параллелепипеда.
* * *
Объем параллелепипеда равен произведению площади его основания на высоту. V=S*h
Т.к. основание - прямоугольник, его площадь равна произведению сторон. S=4*6=24 см² Высоту параллелепипеда нужно найти.
Сделаем рисунок. Ребро АА₁ образует со смежными сторонами основания углы А₁АМ и А1АК в 60° .⇒ высоты смежных боковых граней равны. А₁М=А₁К=АА1•sin60=√3 см. АК=АМ=АА1•cos60°=2•1/2=1 см.
Высоты боковых граней – наклонные к плоскости основания, и, так как они равны, равны и их проекции на АВСD. По т. о 3-х перпендикулярах НМ⊥АD, НК⊥АВ. МН=КН=АМ=АК=1. АМНК - квадрат. Перпендикуляр А1Н к основанию АВСD – высота параллелепипеда Из ∆ А1НК по т. Пифагора А1Н=√(A1K²-HK²)=√(3-1)=√2 Объем параллелепипеда V=S•H=24•√2=24√2 ед. объема.