1)Так как отрезок АВ не параллелен плоскости, а отрезок АС(2,4) параллелен отрезку ВD(7,6), то АВСD-трапеция. Следовательно отрезок МF-средняя линия трапеции. МF=(АС+ ВD)/2 МF=(2,4+7,6)/2 МF=10/2 МF=5. ответ: 5 см.ИлИ
Пусть О - середина отрезка АВ. Опустим перпендикуляры к плоскости из точек А, В и О, соответствующие точки на плоскости обозначим A', B' и O', отрезки АА', ВВ' и ОО' - параллельны.Так как проекция сохраняет отношение длин коллинеарных отрезков, то A'O'/O'B'=АО/ОВ=1, т.е.O' - середина A'B'. Получается, что А'АВВ' - трапеция, где А'А и В'В - основания, а О'О - её средняя линия. Длина средней линии трапеции равна полусумме длин её оснований.
(2,4+7,6):2=5 (см)
ответ: расстояние от середины отрезка АВ до плоскости 5 сантиметров.
2)
столб длиной 3 м- АВ, длиной 6 м-ДС, перекладина в 5 м - ВС, расстояние между столбами-АД. ВЕ-высота данной трапеции(рисунок).
АД=ВЕ
ВА=ДЕ
СЕ=ДС-ЕД
СЕ=ДС-ВА=6-3=3м
т.к ДА=ВЕ - АД= корню квадратному из (ВС² - СЕ²)= корню из 25-9 = 4м
ответ:4 м
3)
Опустим перпендикуляр из точки к плоскости, его длина будет равна h см. Длина меньшей проекции а см, большей (а+4) см. Пользуясь теоремой Пифагора, можно составить следующие равенства
Приравняем:
273-8а=225
8а=273-225
8а=48
а=6
а+4=6+4=10
ответ: длина проекции наклонной 17 см равна 10 сантиметров, а наклонной 15см равна 6 сантиметров.
4)тут нарисовать надо равносторонний треугольник АВС, из А вверх рисуем отрезок АД, перпендикулярный плоскости АВС , расстояние от Д до отрезка будет = отрезку до середины ВС, например М
тогда ДМ=корень(АД^2+AM^2)
АМ- это высота равносторон. треуг.=а*корень3/2=4корень3
подставляем ДМ=корень(1+48)=7
Площадь боковой поверхности состоит из площади трёх боковых граней:Sбок = 3*(1/2)*12*8 =144 кв.ед.
2) Площадь основания So = (1/2)*6*6 = 18 см² (треугольник основания - равнобедренный с острыми углами по 45 градусов).
Высота призмы Н = V / So = 108 / 18 = 6 см.
Периметр основания Р = 6 + 6 + 6√2 = 6(2 + √2) см.
Тогда полная площадь поверхности призмы равна :
S = 2So + PH = 2*18 + ( 6(2 + √2))*6 = 36 + 36 (2 + √2) =
=36(3+√2) см².