1через вершину в треугольника авс проведён к его плоскости перпендикуляр вк. найти линейный угол между плоскостями скв и акв 2 .давс – треугольная пирамида, ае перпендикулярна дс и ве перпендикулярна дс. найти линейный угол для двугранного вдса.
Линейный угол двугранного угла - угол между двумя перпендикулярами к ребру двугранного угла, лежащими в гранях двугранного угла и имеющими на ребре общее начало.
1)ВК-линия по которой касаются плоскости АКВ и СКВ. АВ лежит в плоскости АКВ и перпендикулярна КВ, ВС лежит в плоскости КВС и перпендикулярна КВ, значит АВС - линейный угол между плоскостями СКВ и АКВ.
2)ДС- ребро двугранного угла ВДСА. АЕ и ЕВ перпендикулярны ДС и лежат в гранях двугранного угла, значит АЕВ- линейный угол для двугранного ВДСА
Номер 1 Рассмотрим треугольник AOC и треугольник BOD: угол AOC равен углу BOD(как вертикальные) AO=OB и CO=OD(по условию,т.к. точка серединой является O) значит треугольник AOC равен треугольнику BOD(по двум сторонам и углу между ними) значит угол DAO равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
номер 2: Рассмотрим треугольник ABD и треугольник ADC: по условию угол BDA равен углу ADC сторона AD-общая и по условию угол BAD=углу DAC(т.к. AD биссектриса) Значит треугольник ABD равен треугольнику ADC(по двум углам и стороне между ними) значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
1)ВК-линия по которой касаются плоскости АКВ и СКВ. АВ лежит в плоскости АКВ и перпендикулярна КВ, ВС лежит в плоскости КВС и перпендикулярна КВ, значит АВС - линейный угол между плоскостями СКВ и АКВ.
2)ДС- ребро двугранного угла ВДСА. АЕ и ЕВ перпендикулярны ДС и лежат в гранях двугранного угла, значит АЕВ- линейный угол для двугранного ВДСА