Кокружности радиуса 5 см из точки а проведена касательная ак с точкой касания к.длина ак равна см.найдите (см) расстояние от точки а до ближайшей точки окружности.
Дана окружность с центром в точке O и радиуса OK=5 AK - касательная к окружности AK=2√6 рассмотрим KOA - прямоугольный, по свойству касательной OA пересекает окружность в точке B значит AB - искомое расстояние OK=OB=R=5 пусть AB=x тогда AO=5+x используя теорему Пифагора, составим равенство: D=100+96=196 x1=2 x2= - 12 не удовлетворяет условию задачи AB=5 см ответ: 5 см
Основание пирамиды - правильный треугольник. Следовательно, радиус описанной около него окружности (ОС) равен удвоенному радиусу вписанной окружности R=2*r = 6. А высота основания СН = 9. Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды. Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO. Рассмотрим прямоугольный треугольник ОCQ. В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности). Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)². Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5. Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150. ответ: Vш ≈ 1150.
Вписанный в правильную пирамиду шар касается основания пирамиды (в его центре и апофем пирамиды. То есть в сечении пирамиды по ее апофемам мы имеем равнобедренный треугольник со сторонами, равными апофкмам и основанием, равным стороне квадрата (основания). В этот треугольник вписана окружность (сечение шара). Есть формула радиуса вписанной в треугольник окружности: r=S/p, где S- площадь треугольника, а р - его полупериметр. Найдем высоту пирамиды по Пифагору: √(10²-6²)=8 (10 - апофема, 6 - половина стороны квадрата). Тогда площадь треугольника равна S=8*6=48. Тогда радиус вписанной в треугольник окружности равен r=S/p= 48/16 = 3. Это и есть радиус вписанного в пирамиду шара. Второй вариант: по формуле радиуса вписанной в равнобедренный треугольник окружности: r=(b/2)*√[(2a-b)/(2a+b)]. В нашем случае: r=6*√(1/4) = 3. Объем шара находим по формуле: V=(4/3)*π*r³ =36π. ответ V = 36π.
AK - касательная к окружности
AK=2√6
рассмотрим KOA - прямоугольный, по свойству касательной
OA пересекает окружность в точке B
значит AB - искомое расстояние
OK=OB=R=5
пусть AB=x
тогда AO=5+x
используя теорему Пифагора, составим равенство:
D=100+96=196
x1=2
x2= - 12 не удовлетворяет условию задачи
AB=5 см
ответ: 5 см