Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
Ставим ножку циркуля в вершину О прямого угла и проводим окружность произвольного радиуса. эта окружность пересекает стороны угла в двух точках А и В. Устанавливаем циркулем расстояние АВ и проводим окружность из точка А радиусом АВ, а затем строим точно такую же окружность из точки В. Эти две окружности пересекутся в точке С. Проведём луч ОС это и есть биссектриса прямого угла. Затем устанавливаем циркулем длину отрезка АВ и на биссектрисе откладываем от вершины это расстояние. Получим точку, которая лежит на биссектрисе угла и находится от вершины на расстоянии 4 см.
Периметр равен 25 см