Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=3). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=1 - это высота пирамиды. Проведем апофему пирамиды SK - это высота боковой грани. Из прямоугольного ΔSKО: SK=√(ОК²+SО²)=√((3/2)²-1²)=√5/2 Площадь основания Sосн=АВ²=3²=9 Периметр основания Р=4АВ=4*3=12 Площадь боковой поверхности Sбок=P*SK/2=12*√5/2 /2=3√5 Площадь полной поверхности Sполн=Sбок+Sосн=3√5+9 Объем V=Sосн*SO/3=9*1/3=3
Пусть точка касания двух окружностей К , эта одна из вершин , две другие A∈(O₁;R₁) , B ∈ (O₂;R₂) . Длина стороны правильного треугольника обозначаем через x (KA=KB=AB =x). Из ΔO₁KA : x = 2R₁cosα ; Из ΔO₂KB: x =2R₂cosβ ; 2R₁cosα =2R₂cosβ , но α+β +60° =180° ⇒ β =120° -α . R₁cosα = R₂cos(120° -α) ; 14cosα =77(cos120°cosα +sin120°sinα) ; 2cosα = 11( -cosα/2 +√3/2*sinα) ; 4cosα = -11cosα+11√3*sinα ; 15cosα =11√3sinα ; tqα =5√3/11 ⇒ cosα= 1/√(1+tq²α) =1/√(1+(5√3/11)²) =1/√((121+75)/11²) =11/14. окончательно : x = 2R₁cosα =2*14*11/14 =22. ответ: 22.
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=3). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=1 - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
Из прямоугольного ΔSKО:
SK=√(ОК²+SО²)=√((3/2)²-1²)=√5/2
Площадь основания Sосн=АВ²=3²=9
Периметр основания Р=4АВ=4*3=12
Площадь боковой поверхности
Sбок=P*SK/2=12*√5/2 /2=3√5
Площадь полной поверхности
Sполн=Sбок+Sосн=3√5+9
Объем
V=Sосн*SO/3=9*1/3=3