углы BОD и СОЕ равны
Объяснение:
Мы можем видеть, что у углов АОЕ и ВОF имеется общая часть, угол ВОЕ.
Так как из условия "Углы АОЕ и ВОF на рисунке 45 равны", и мы вычтем из углов их общую чать, то получим, что угол ЕОF равен углу ВОА.
А так как ОВ и OE — биссектрисы углов АОС и DOF, то можем сделать вывод, что угол DOЕ равен углу СОВ.
Углы BОD и СОЕ можно представить как сумму общей для углов части, угол DOС с соответствующими углами СОВ и DOЕ. И так как угол DOЕ равен углу СОВ, следует, что углы BОD и СОЕ равны.
Соразмерно условию сделаем и рассмотрим рисунок.
Противоположные стороны параллелограмма параллельны и равны.
Высота параллелограмма перпендикулярна его противоположным сторонам.
ВН ⊥ ВС и ⊥ АД
ВМ ⊥ АВ и ⊥ прямой, содержащей СД ⇒
Угол АВМ - прямой, угол АВН=90º-60º, ⇒
угол ВАН=30º
Противоположные углы параллелограмма равны. ⇒
угол ВСД= углу ВАД=30º
Катет ВН в треугольнике АВН противолежит углу 30º.
Гипотенуза в два раза больше катета, противолежащего углу 30º.
АВ=ВН:sin (30º)=6: 0,5=12 см
Катет ВМ в треугольнике ВСМ противолежит углу 30º.
ВС=ВМ:sin (30º)=16: 0,5=32 см
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
S АВСД=6*32=192 см²илиS АВСД=16*12=192 см²
или
S АВСД=16*12=192 см²