Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
1) Дуги DB и DA равны, поскольку СВ - биссектриса. => равны центральные углы AO1D и AO1D. => O1D биссектриса в равнобедренном треугольнике, то есть она перпендикулярна основанию AB и делит его пополам. Ну это равносильно тому, что она проходит через середину AB - точку C3, и параллельна высоте CC1.
2) Точка O - точка пересечения биссектрис CO и BO треугольника ABC.
∠DOB = ∠OBC + ∠OCB; как внешний угол треугольника OBC;
∠OBD = ∠OBA + ∠DBA = ∠OBC + ∠ACD = ∠OBC + ∠OCB = ∠DOB;
=> треугольник ODB равнобедренный, OD = DB;
само собой, DB = DA, потому что равны дуги, стягиваемые этими хордами.
все доказано.
это же справедливо для любой из трех биссектрис - AO, будучи продолжена до пересечения с описанной окружностью, даст точку D1, и точно также доказывается D1O = D1C = D1B ...