1)дано: циліндр, авсd- переріз, вd-діагональ, r=ао=од=6 см, кут вdа=60 градусівзнайти: ав, s abcdз трикутника вdа ( кут ваd= 90 градусів)tg60= ab/ad ad=ao+od=12 смab=ad tg60ab=12 * корінь з 3осьовим перерізом є прямокутник, отжеs=ab*ads=12коренів з 3 * 12=144 корінь з 3 (см2)
2)осьовим перерізом є прямокутник, а прямокутник, у якого діагоналі перпендикулярні - це квадрат, отже висота = 2r=10 см3) з трикутника аво во=r=5см, к-середина ав, ко=4см,з трикутника вок (кут вко = 90 градусів)за т.піфагора вк= корінь квадратний 25-16= 3 смав=2вк=6 смас=h=8 cмs= 8*6=48 (cм2)4) ао=r=5см, ka і кв - твірні, ka=13 cм , sakb-? з трикутника коа (кут коа=90 градусів)ко=корінь з 169-25=корінь з 144=12s=ав*ко/2 ав=ao+ob=10s=10*12/2=60 (см2)
АВСД - прямоуг. трапеция , АД║ВС , ∠А=∠В=90° , ВС=ВД
СН⊥АД , СН∩ВД=К , СК=20 см , КН=12 см .
СК:КН=20:12 ⇒ СК:КН=5:3
ΔВСД - равнобедренный, т.к. ВС=СД ⇒ ∠ВСД=∠СДВ .
∠ВСД=∠ВДА как накрест лежащие при параллельных АД и ВС и
секущей ВД ⇒
∠СВД=∠ВДА ⇒ ВД - биссектриса
ΔСДН: ВК - биссектриса, по свойству биссектрисы:
СК:СД=КН:ДН ⇒ СД:ДН=5:3 ⇒ СД=5х , ДН=3х .
СН²=СД²-ДА²=(5х)²-(3х)²=16х² ⇒ СН=4х , 4х=(20+12) , 4х=32 , х=8
СД=5·8=40 (см) , ДН=3·8=24 (см)
ВС=СД=40 см ⇒ АН=ВС=40 см ( как противоположные стороны прямоугольника АВСН ⇒ АД=АН+НД=40+24=64 (см)
S(АВСД)=(АД+ВС):2·СН=(64+40):2·32=1664 (см²)
Объяснение:
Четырехугольник вписанный , если обозначит последовательно вершины
ответ