ответ:Если две прямые на плоскости,в данный момент это ВК и MN ,перпендикулярны к одной и той же прямой АС,то они параллельны,т к к прямой в плоскости из любой точки можно провести только один перпендикуляр
Параллельность прямых доказана
Теперь об углах
<СМN и <СВК являются соответственными и равны между собой
<СМN=<CBK=46 градусов
В условии сказано,что ВК биссектриса угла АВС
Биссектриса делит угол из которого она проведена на два равных угла,один из них угол СВК
<АВС=<СВК•2=46•2=92 градуса
Объяснение:
Точка пересечения серединных перпендикуляров треугольника является центром окружности, описанной около этого треугольника. Так как данный треугольник — равнобедренный, то по теореме о медиане равнобедренного треугольника медиана, биссектриса и высота треугольника, проведенные к основанию, совпадают. Значит, высота совпадает с серединным перпендикуляром, проведенным к основанию треугольника. Следовательно, центр окружности, описанной около равнобедренного треугольника, лежит на медиане, проведенной к основанию.
Объяснение:
ВN- биссектриса, углы АВN и ТВN - равны, а ТВN и АNВ - равны как накрестлежащие, и потому треугольник ВАН- равнобедренный.
Сторона АN=АВ=8
S (ABT)=AB*BT:2=6*8:2=24
В трапеции образованные диагоналями треугольники при боковых сторонах - равновелики, при основаниях - подобны.
S (АВР)=S (PTN)
-------
Рассмотрим треугольник АВТ. Он египетский (отношение катетов 3:4), значит, AT=10 ( можно проверить по т.Пифагора)
Высоту ВН найдем из площади треугольника АВТ:
S (ABT)=BH*AT:2
ВН= 2 S ABT:AT=48:10=4,8
------
Рассмотрим треугольники ВРТ и АРN.
Они подобны по первому признаку подобия - имеют равные вертикальные углы при Р и равные накрестлежащие углы при секущих ВN и АТ. Коэффициент подобия равен ВТ:АN= 6:8=3/4
АТ=ТР+РА= 3+4=7 частей
1 часть =10/7
АР=4 части=АТ*4/7
АР=10:7*4
S ABP=AP*BH:2= (40/7)*4,8:2=96:7=13 ⁵/₇
В трапеции образованные диагоналями треугольники при боковых сторонах - равновелики
S PTN=S ABP=13 ⁵/₇