а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.
б) Найдите угол между этой плоскостью и плоскостью основания АВС. Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ. Точки пресечения - это Д и Е. Примем длину отрезка АК за 1. Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3. Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1. Угол ЕАД равен 60 градусов (по заданию). По теореме косинусов Находим гипотенузы в треугольниках АКД и АКЕ. КЕ = √(1²+1²) = √2 (острые углы по 45 градусов). Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти. Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД. Находим высоты в треугольниках АЕД и КЕД по формуле: АЕ ДЕ АД p 2p S = 1 0.8694729 0.5773503 1.2234116 2.446823135 0.25 haе hде hад 0.5 0.57506 0.86603
КЕ ДЕ КД p 2p S = 1.4142136 0.869473 1.154701 1.719194 3.43839 0.501492 hке hде hкд 0.7092 1.15356 0.86861. Отношение высот hде и hде - это косинус искомого угла: cos α = 0.57506 / 1.15356 = 0.498510913. ответ: α = 1.048916149 радиан = 60.09846842°.
Только половина : в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. доказательство пусть δ abc – равнобедренный с основанием ab, и cd – медиана, проведенная к основанию. в треугольниках cad и cbd углы cad и cbd равны, как углы при основании равнобедренного треугольника , стороны ac и bc равны по определению равнобедренного треугольника, стороны ad и bd равны, потому что d – середина отрезка ab . отсюда получаем, что δ acd = δ bcd . из равенства треугольников следует равенство соответствующих углов: acd = bcd, adc = bdc . из первого равенства следует, что cd – биссектриса. углы adc и bdc смежные, и в силу второго равенства они прямые, поэтому cd – высота треугольника. теорема доказана.
х+х+(х+5)+(х+5) = 22
4х+10 = 22
4х = 12
х = 3 = АВ
АД = 3+5 = 8
Sавсд = АВ*АД = 3*8 = 24
ответ: Sавсд = 24 см2