Вравнобедренном треугольнике биссектриса угла при основании пересекает боковую сторону, так , что длинна отрезка, прилежащего к вершине, равна удвоенной длине основания треугольника. найти отношение длины биссектрисы к длине основания.
Если b - боковая сторона, a - основание, то отрезки, на которые делит биссектриса боковую сторону, считая от вершины (противоположной основанию), равны 2a и b - 2a; Длина биссектрисы L L^2 = ab - (2a)(b - 2a) = 4a^2 - ab; или (L/a)^2 = 4 - b/a; Из свойства биссектрисы a/b = (b - 2a)/(2a) = b/2a - 1; если x = b/a; то 1/x = x/2 - 1; или x^2 - 2x - 2 = 0; (x - 1)^2 = 3; x = 1 + √3; (1 - √3 < 0) Откуда (L/a)^2 = 3 - √3; L/a = √(3 - √3);
1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
(с каждой вершины выходят отрезки соединяющие ее с остальными n-1 вершинами, две из них стороны, остальные n-3 отрезка - диагонали
всего вершин n, потому количество всех диагоналей n(n-3), но так как концы отрезка принадлежат двум вершинам, то в этом произведении мы посчитали каждую диагоналей дважды, поэтому
число диагоналей n(n-3)/2) итого
имеем для данного многоульника n(n-3)/2=35 n(n-3)=70 - не подходит, количество вершин не может быть отрицательным
итого вершин 10
10*(10-3):2=35
в выпуклом многоугольнике число вершин=числу сторон ответ: 10
Длина биссектрисы L
L^2 = ab - (2a)(b - 2a) = 4a^2 - ab; или (L/a)^2 = 4 - b/a;
Из свойства биссектрисы
a/b = (b - 2a)/(2a) = b/2a - 1; если x = b/a; то 1/x = x/2 - 1; или
x^2 - 2x - 2 = 0; (x - 1)^2 = 3;
x = 1 + √3; (1 - √3 < 0)
Откуда (L/a)^2 = 3 - √3; L/a = √(3 - √3);