У октаэдра 8 граней - равносторонних треугольников.
Площадь полной поверхности правильного октаэдра с длиной ребра a равна S = 8*(a²√3/4) = 2√3a².
Приравняем заданному значению: 18√3 = 2√3a², a² = 9, а = 3.
Нашли длину ребра: а = 3.
Объем равен удвоенному объему правильной четырехугольной пирамиды . Основанием пирамиды является квадрат со стороной a, а высота пирамиды равна длине отрезка AO.
АО = √(a² - (a√2/2)²) = √(a² - (2a²/4)) = a/√2.
Объём V = 2*((1/3)*a²*(a/√2)) = a³√2/3.
Подставим а = 3.
Тогда V = 3³√2/3 = 9√2.
Дано:
АВСЕ — ромб,
ВС = 10 дециметров,
угол В = 150 градусов.
Найти площадь ромба АВСЕ, то есть S АВСЕ — ?
1. Рассмотрим ромб АВСЕ. У него противолежащие стороны и углы равны между собой, тогда угол А = углу С , угол В = углу Е. Нам известно, что сумма градусных мер параллелограмма равна 360 градусам. Следовательно:
угол А + угол С = 360 - 150 - 150;
угол А + угол С = 60;
угол А = углу С = 60 : 2;
угол А = углу С = 30 градусов.
2. S АВСЕ = ВС * СЕ * sin С;
S АВСЕ = 10 * 10 * 1/2;
S АВСЕ = 10 дециметров квадратных.
ответ: 10 дециметров квадратных.
АС=√(АВ²-ВС²)=√(625-400)=√225=15
tgA=BC/AC=20/15=4/3