Медиана равна половине гипотенузы. Катет равен медиане. Значит треугольник составленный из этого катета, медианы и половины гипотенузы - равносторонний. Т.е. угол при гипотенузе равен 60 градусов. Следовательно меньший из углов при гипотенузе равен 30 градусов.
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
1. Это надо начертить, тогда все увидишь. Так как AC=BD а это диагонали нашего четырехугольника, значит, по равенству диагоналей, четырехугольник-либо прямоугольник, либо равнобокая трапеция. Рисуй равнобокую трапецию ABCD. Расставь серединные точки, нарисуй диагонали. И вот что мы видим: угол LMN в треугольнике LMN где ML-средняя линия треугольника BDC (так как указанные точки СЕРЕДИНЫ сторон) и значит равна половине основания ML=BD/2 NM-средняя линия в треугольнике АВС, значит равна половине АС NM=AC/2 По условию LN=AC/2=BD/2 значит ML=2LN/2=LN NM=2LN/2=LN итак в треугольнике LMN LN=ML=NM раз стороны равны, значит, треугольник равносторонний, а его углы равны по 180.3=60 ответ 60 2. по признаку параллельности прямой и плоскости -прямая параллельна плоскости, если она параллельна прямой, лежащей в этой плоскости. так что минимум -одна, но в плоскости можно начертить n-количество прямых параллельных друг другу, а значит и параллельных прямой вне плоскости
Т.е. угол при гипотенузе равен 60 градусов. Следовательно меньший из углов при гипотенузе равен 30 градусов.