В равнобедренном треугольнике углы при основании равны <A=<C=(180-<B)/2=(180-53)/2=63,5°=63°30` Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Внешний <А=<В+<С=53+63,5=116,5°=116°30` Внешний <С=внешнему <А=116°30` Внешний <В=<А+<С=63,5+63,5=127°
Пусть АК - биссектриса треугольника АВС , ВМ - его медиана. Т.к. биссектриса треугольника АВМ перпендикулярна стороне ВМ, она является его высотой. Если биссектриса треугольника совпадает с высотой, она является и его медианой,⇒ треугольник ВАМ - равнобедренный. АВ=АМ. ВМ - медиана треугольника АВС, ⇒ АВ=АМ=МС, и АС=2 АВ. Пусть средняя по длине сторона равна х Если предположить, что АВ - средняя сторона, то АС=х+1, ВС=х-1 Тогда АС=2х=х+1, откуда х=1, и ВС=1-1=0, чего быть не может. ⇒ ВС- средняя сторона. ВС=х, АС=х+1, АВ=х-1 АС=2(х-1)=2х-2 2х-2=х+1 ⇒ х=3 ВС=3 АВ=3-1=2 АС=3+1=4 - это наибольшее значение самой длинной стороны
Длина окр: 2пr = 8п 2r=8п:п 2r =8 r=4-рдиус вписан. окр. S впис. окр = пr2 S=3,14*4*4= 50,24 - плозадь впис окр. Плозадь окр, опис. вокруг правильного треуг. в 4 раза больше S опис. окр. =50,24*4=200,96 S кольца = S опис. окр.- S впис. окр. S кольца= 200,96- 50,24= 150,72 В треуг ABCD проведем медеаны,AD,BK,CM. S треуг. ABCD 1/2 AC*BK, 1/2 AC=KC Медиана треуг. впис окр. делится в отношении 2:1 Поэтому высота BK=R+r=8+4=12 S=12*KC Найдем KC - сторону треуг. KOC, KC-касат.,OC=R=8-гипотинуза, другой катет ОK=r=4 KC2=OC2+OK2 KC-корень из 8*8-4*4= корень из 48= 6,92 Sтреуг. ABC=12*6,92=83,04 Прости,но без рисунка.
<A=<C=(180-<B)/2=(180-53)/2=63,5°=63°30`
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Внешний <А=<В+<С=53+63,5=116,5°=116°30`
Внешний <С=внешнему <А=116°30`
Внешний <В=<А+<С=63,5+63,5=127°