-Длина отрезка ОВ равна длине отрезка ОС как радиусы окружности.
ОВ = ОС = 4 см.
-Радиусы ОВ и ОС проведены к точкам касания В и С касательных АВ и АС, тогда радиусы ОВ и ОС перпендикулярны касательным АВ и АС, а тогда треугольники АОС и АОВ прямоугольные.
-Касательные АС и АВ проведены из одной точки А, тогда, по свойству касательных, АВ = АС.
-В прямоугольных треугольниках АОВ и АОС гипотенуза АО общая, катет ОВ = ОС, тогда треугольники АОВ и АОС равны по катету и гипотенузе.
Тогда угол ОАВ = ОАС = ВАС / 2 = 56 / 2 = 280.
ответ:280
Значит <А=<Д=180-120=60°
Высота трапеции ВН=4√3
Из прямоугольного ΔАВН:
АВ=ВН/sin A=4√3 / √3/2=8
AH=BH/tg A=4√3 / √3=4
Диагональ АС делит угол А пополам (<ВАС=<ДАС=60/2=30°).
В ΔАВС получается, что <ВАС=<ВСА, значит треугольник- равнобедренный (АВ=ВС=8)
АД=2АН+ВС=2*4+8=16
Площадь трапеции
S=(АД+ВС)*ВН/2=(16+8)*4√3/2=48√3