Вправильной треугольной пирамиде авсd с основанием авс известны рёбра ав=12√3, sc=13. найдите угол, образованный плоскостью основания и прямой, проходящей через середины рёбер аs и вс. в ответ напишите котангенс этого угла.
Отрезок прямой, проходящей через середины ребер AS и BC, обозначим КМ. Медиана основания АМ (она же и высота и биссектриса основания) равна АВ*cos 30° = 12√3 * (√3/2) = 18. Точка К на середине ребра SA проецируется на медиану в точку Е, находящуюся посредине отрезка АО, равного 2/3 АМ. АО = (2/3)*18 = 12, ЕО = (1/2)*12 = 6. Отсюда ЕМ = 6+(1/3)*18 = 6 + 6 = 12. Высота пирамиды SO = √(SA²-AO²) = √(13²-12²) = √(169-144) = √25 = 5. Отрезок КЕ равен половине высоты пирамиды: КЕ = 5/2 = 2,5. Угол, образованный плоскостью основания и прямой, проходящей через середины ребер AS и BC, - это угол КМЕ = α. ctg α = EM / KE = 12 / 2.5 = 4.8. α = arc ctg 4.8 = 0.205395 радиан = 11.76829 градуса
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
По определению хорда МР и диаметр КЕ - отрезки, соединяющие точки окружности. Следовательно, они могут образовать искомый угол только пересекаясь внутри окружности, имея одну общую точку, например, Н. КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°. ответ: 127°
Медиана основания АМ (она же и высота и биссектриса основания) равна АВ*cos 30° = 12√3 * (√3/2) = 18.
Точка К на середине ребра SA проецируется на медиану в точку Е, находящуюся посредине отрезка АО, равного 2/3 АМ.
АО = (2/3)*18 = 12, ЕО = (1/2)*12 = 6.
Отсюда ЕМ = 6+(1/3)*18 = 6 + 6 = 12.
Высота пирамиды SO = √(SA²-AO²) = √(13²-12²) = √(169-144) = √25 = 5.
Отрезок КЕ равен половине высоты пирамиды: КЕ = 5/2 = 2,5.
Угол, образованный плоскостью основания и прямой, проходящей через середины ребер AS и BC, - это угол КМЕ = α.
ctg α = EM / KE = 12 / 2.5 = 4.8.
α = arc ctg 4.8 = 0.205395 радиан = 11.76829 градуса