Решение
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, < АВС = 180° - 30° = 150°
Пусть АВ = 4см
ВС = 4√3 см
Найдем по теореме косинусов диагональ основания АС.
АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС² = 16 + 48 + [32√3*(√3)]/2=112
АС = √112 = 4√7
Высота призмы
СС₁ = АС / ctg(60°)=(4√7) / 1/√3
CC₁ = 4√21
Площадь боковой поверхности данной призмы
S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см²
ответ: 32√21*(1+√3) см²
Середина большей стороны - точка Н: (ВН=НС=ВС/2=6)
Перпендикуляр ЕН=4,8
Нужно найти расстояние ЕК до диагонали АС.
Диагональ АС=√(АВ²+ВС²)=√81+144=√225=15
Прямоугольные ΔСКН (<CKH=90°) и ΔАДС подобны по острому углу (<НСК=<САД как накрест лежащие при пересечении параллельных прямых ВС иАД секущей АС).
Значит НК/СД=НС/АС
НК=СД*НС/АС=9*6/15=3,6
Из прямоугольного ΔЕНК
ЕК=√(ЕН²+НК²)=√(23,04+12,96)=√36=6